
REGISTRATION NUMBER 00000001

NEWDOS 8O
FOR THE TRS-80

MODEL I / III / 4
MICRO COMPUTER

Apparat Incorporated takes pleasure in presenting NEWDOS/80, Version 2.5. Above
is the registration number of your NEWDOS/80. This registration number must be
the same as the registration number you find on your diskette label and the enclosed
registration card. If they are not, return them to the dealer from whom you purchased
your NEWDOS/80 to be reissued. This registration Number is your assurance of
receiving any corrections or minor revisions to NEWDOS/80 that may be released.
The registration card should be completed and returned to Apparat at your earliest
convenience. PLEASE RETURN THE CARD IT IS IMPORTANT! It our only method
of determining who has purchased this copy of the system. This number should be
included in all correspondence with Apparat.

Apparat, Inc
4401 So. Tamarac Parkway • Denver, Colorado 80237

HELPFUL HINTS IN USING YOUR NEWDOS/80 VERSION 2.5

We suggest using the following checklist as a guide to setting up software on
your Hard Disk System:

1. Carefully read through all related documentation.

2. Make hardware installation as directed by instructions supplied with
your Hard Drive Unit.

3. Boot on your NEWDOS/80 Version 2.5 original master diskette and make
backup copy or copies. Refer to Chapter 1, Section 1.4 of the NEWDOS/80 Version
2.0 manual for details if unfamiliar with the procedure.

4. Designate one of your backups as a working copy an d boot (or reset) on
it. Use this diskette for the remainder of this procedure.

5. Use HDFMTAPP/CMD. Refer to Section 4 in the NEWDOS/80 Version 2.5 manual
(Appendix C).

6. Set up your PDRIVE definitions for the Hard Drive Volumes according to
Section 3 & 6 of the NEWDOS/80 Version 2.5 manual.

7. Use DOS command FORMAT on each defined volume of the Hard Disk. This has
not been very clear to some of our users. HDFMTAPP/CMD is only a "media format"
utility that allows the hard drive to be used with NEWDOS/80 (or other DOS
system). DOS command FORMAT, although does not prepare the media as
HDFMTAPP/CMD, is important for checking the media and preparing the directory
(DIR/SYS) and the boot sectors (BOOT/SYS) on the hard drive volumes. If the
volume was not prepared with FORMAT, it will seem to operate correctly with
COPY, OPEN, and CLOSE (ie. normal file operations), but HDBACKUP/CMD and
DIRCHECK/CMD will not function.

8. (Optional) Move NEWDOS/80 Version 2.5 to Hard Disk Volume. Refer to
Section 5 of the NEWDOS/80 Version 2.5 manual. Don't forget to move your PDRIVE
definitions to appropriate new slots. Follow procedure to create Boot Diskette.

9. Install application software and related data files.

iii

Table of Contents

Chapter 1. INTRODUCTION

1.1. Registration. ..1-1
1.2. Trademark Credits. ...1-1
1.3. What Is Apparat's DOS/80 Version 2?1-1
1.4. Duplicate and Specify the System.1-2
1.5. Apply Outstanding Zaps. ..1-4
1.6. Commence Using NEWDOS/80.1-5
1.7. Apparat Thanks Its Beta Testers.1-5

Chapter 2. DOS LIBRARY COMMANDS

2.1. Notation Conventions and General Information.2-1
2.2. APPEND Append one file onto the end of another.2-2
2.3. ATTRIB Assign attributes to a file.2-3
2.4. AUTO Define the DOS command to be executed at reset.2-5
2.5. BASIC2 Activate non-disk BASIC (Model I only).2-5
2.6. BLINK Enable/disable cursor blinking.2-5
2.7. BOOT Reset the computer.2-6
2.8. BREAK Enable/disable the BREAK key.2-6
2.9. CHAIN Shift to keyboard input from disk.2-6
2.10. CHNON Alter chaining state.2-7
2.11. CLEAR Clear user memory routes, timer and logical enqueues. 2-8
2.12. CLOCK Display the time every second.2-9
2.13. CLS Clear the display.2-9
2.14. COPY Copy single or multiple files or a full diskette2-9
2.15. CREATE Pre-allocate a disk file.2-18
2.16. DATE Set computer's current date.2-19
2.17. DEBUG enable or disable the DEBUG facility.2-20
2.18. DIR Display a diskette's directory information.2-20
2.19. DO Shift to keyboard input from disk.2-22
2.20. DUMP Dump memory contents to disk.2-22
2.21. ERROR Display DOS error message.2-24
2.22. FORMAT Format a diskette for use with the NEWDOS/80 system. .2-24
2.23. FORMS (Model III only) Set printer parameters.2-26
2.24. FREE Display free granule count of each mounted diskette ..2-27
2.25. HIMEM Set DOS's high memory value.2-27
2.26. JKL Send current contents of display to the printer.2-27
2.27. KILL delete a file.2-28
2.28. LC Set keyboard a-z toggle switch to specified state. ...2-29
2.29. LCDVR (Model I only) Lower case driver.2-29
2.30. LIB Display NEWDOS/80 library commands.2-30
2.31. LIST List a text file on the display.2-30
2.32. LOAD Load a Z-80 machine language file into RAM.2-31
2.33. MDBORT Terminate MINI-DOS and go to DOS READY.2-31
2.34. MDCOPY Copy a file while under MINI-DOS.2-32
2.35. MDRET Exit from MINI-DOS and return to main program.2-32
2.36. PAUSE Display message and pause waiting on ENTER.2-33
2.37. PDRIVE Assign default attributes to a physical drive.2-33
2.38. PRINT List a text file on the printer.2-39
2.39. PROT Alter some diskette control data.2-40

iv

2.40. PURGE Selectively kill files from a diskette.2-41
2.41. R Repeat the previous DOS command.2-41
2.42. RENAME Rename a file.2-42
2.43. ROUTE Route one device to or from another2-42
2.44. SETCOM (Model III only) Set RS-232 interface parameters.2-44
2.45. STMT Display specified message.2-45
2.46. SYSTEM Change system options.2-45
2.47. TIME Set the real time clock.2-50
2.48. VERIFY Require verify read after every disk write.2-51
2.49. WRDIP Write directory sectors protected.2-52

Chapter 3. DOS ROUTINES

3.1. Specifications Defined ...3-1
3.2. 402DH No-Error Exit ..3-1
3.3. 4030H Error-already-displayed DOS Error Exit3-2
3.4. 4400H No-Error Exit. Performs identical to 402DH.3-2
3.5. 4405H Enter DOS and execute a command3-2
3.6. 4409H DOS Error Exit3-2
3.7. 440DH Enter DEBUG ..3-3
3.8. 4410H Enquene a user timer interrupt routine.3-3
3.9. 4413H Dequeue a user timer interrupt routine.3-4
3.10. 4416H Keep drives rotating3-4
3.11. 4419H DOS-CALL Execute a DOS command and return.3-4
3.12. 441CH Extract a filespec3-5
3.13. 4420H Open a FCB to a new or existing disk file3-5
3.14. 4424H OPEN a FCB to an existing file3-6
3.15. 4428H CLOSE a FCB. Conditions 3.1.A, B and C hold3-7
3.16. 442CH Kill the FCB's associated file3-7
3.17. 4430H Load a program file3-7
3.18. 4433H Load and commence execution of a program file3-7
3.19. 4436H Read sector or logical record from disk3-7
3.20. 4439H Write sector or logical record to disk3-8
3.21. 443CH Write sector or logical record to disk with verify ...3-9
3.22. 443FH Position FCB to start of file3-9
3.23. 4442H Position FCB to a specified file record3-9
3.24. 4445H Position FCB back one record3-9
3.25. 4448H Position FCB to EOF3-9
3.26. 444BH Allocate file space3-10
3.27. 444EH Position FCB to the specified RBA3-10
3.28. 4451H Write the EOF value from the FCB to the directory3-10
3.29. 445BH Select and power up the specified drive3-10
3.30. 445EH Test for mounted diskette3-10
3.31. 4461H *Name routine enqueue3-10
3.32. 4464H *name routine dequeue3-11
3.33. 4467H Send message to the display3-11
3.34. 446AH Send message to the printer3-11
3.35. 446DH Convert clock time to HH:HM:SS character format3-11
3.36. 4470H Convert the date to MM/DD/YY character format3-11
3.37. 4473H Insert default name extension into filespec3-12
3.38. 0013H Read a byte from a disk file3-12
3.39. 001BH Write a byte to a disk file3-12
3.40. 447BH Model III only (performs as Model I 4410H)3-12

v

Chapert 4. DOS FEATURES

4.1. DEBUG Facility ...4-1
4.2. MINI-DOS ...4-5
4.3. CHAINING ...4-7
4.4. DOS-CALL ...4-12
4.5. JKL ..4-13
4.6. Asynchronous Execution ...4-14

Chapter 5. DOS MODULES, DATA STRUCTURES, AHD MISCELLANEOUS INFORMATION

5.1. Files required on each diskette used with NEWDOS/805-1
5.2. NEWDOS/80 DOS System Modules5-1
5.3. NEWDOS/80 BASIC Modules ..5-2
5.4. Other Modules on the NEWDOS/80 diskette5-3
5.5. Reduced Sized System. ..5-4
5.6. Diskette Directory Structure5-4
5.7. FPDE File Primary Directory Entry5-7
5.8. FXDE File Extended Directory Entry5-9
5.9. FCB File Control Block5-9

Chapter 6. ADDITIONAL PROGRAMS SUPPLIED OP NEWDOS/80 DISKETTE

6.1. SUPERZAP Inspect/Change Disk/Main Memory6-1
6.2. DISASSEM Disassemble Z-80 Code6-5
6.3. LMOFFSET Move Module to New Load Position6-9
6.4. DIRCHECK Inspect and List a Directory6-12
6.5. EDTASM Disk Oriented Editor/Assembler6-14
6.6. CRAINBLD Create and Modify Chain Files6-16
6.7. ASPOOL Automatic Spooler6-19

Chapter 7. DISK BASIC, NON-I/O ENHANCEMENTS

7.1. INTRODUCTION, Requirements7-1
7.2. General comments ...7-1
7.3. Activating DISK BASIC ..7-2
7.4. Direct Scrolling/Editing Commands7-3
7.5. Text Editing Command Truncation7-4
7.6. DI and DU text editing functions7-4
7.7. RUN and LOAD (optionally retaining variables)7-4
7.8. MERGE Dynamic loading of overlay program7-5
7.9. RENUM Renumber the Current BASIC Program.7-5
7.10. REF List references to variables, line numbers and keywords7-7
7.11. Lower Case Suppression (Model I only)7-8
7.12. RUN-ONLY ...7-8
7.13. Comarisons in the use of CMD between NEWDOS/80 and TRSDOS.7-8
7.14. CMD"doscmd" ..7-11
7.15. CMD"F=POPS", CMD"POPR" and CMD"F=POPN"7-12
7.16. CMD"F=SASZ" ..7-12
7.17. CMD"F=ERASE" and CMD"F=KEEP"7-12
7.18. CMD"F",DELETE ..7-13

vi

7.19. CMD"F=SWAP" ..7-13
7.20. CMD"F=SS" ..7-14
7.21. CMD"O" ...7-14
7.22. RENEW ..7-17

Chapter 8. BASIC DISK I/O ENHANCEMENTS AND DIFFERENCES

8.1. Introduction ...8-1
8.2. File Type ..8-1
8.3. File type differences ..8-2
8.4. Components of GET and PUT8-3
8.5. Fixed item file characteristics8-7
8.6. Marked item file characteristics8-7
8.7. OPEN ...8-9
8.8. GET ..8-12
8.9. PUT ..8-14
8.10. REMRA and REMBA ..8-16
8.11. Pseudo FIELD Function ..8-17
8.12. LOC Function ...8-18
8.13. I/O Error Recovery ...8-19
8.14. Additional notes about NEWDOS/80 DISK BASIC I/O8-20

Chapter 9. ERROR CODES AND MESSAGES

9.1. DOS Error Codes and Messages9-1
9.2. DISK BASIC Error Codes and Messages9-2

Chapter 10. GLOSSARY ...10-1

Chapter 11. ERROR REPORTING, INCOMPATIBILITY HANDLING, AND PATCHING

11.1. Introduction ...11-1
11.2. Incompatibility Handling11-1
11.3. Reporting of NEWDOS/80 Errors and Incompatibilities11-2
11.4. Format of NEWDOS/80 Zaps11-2
11.5. Zapping Procedure ..11-4
11.6. NEWDOS/80 Zap Distribution11-5
11.7. Initial Installation of Zaps11-5
11.8. Subsequent Installation of Zaps11-6
11.9. Diskette Update Service ..11-6
11.10. Zap Duplication. ...11-7

Chapter 12. CONVERSION INFORMATION AND MISCELLANEOUS COMMENTS

12.1. RBAs gain in respectability12-1
12.2. Converting from Ver. 1 to Ver. 2 on the Model I12-2

vii

12.3. Converting from Ver. 1 to Ver. 2 on the Model III.12-5
12.4. NEWDOS/80 Ver. 2 incompatibilities with TRSDOS Version 2.3.12-6
12.5. NEWDOS/80 Ver. 2 incompatibilities with TRSDOS Version 1.312-7
12.6. Miscellaneous Comments ...12-8

Chapter 13. ZAPS (PATCHES)

APPENDIX A Discussion and example of NEWDOS/80 file routines

APPENDIX B Example of fixed and marked item file usage

APPENDIX C NEWDOS/80 Version 2.5 (Hard Disk System)

Index

INTRODUCTION1-1

1. INTRODUCTION

1.1. Registration.

As soon as you receive your NEWDOS/80, fill out and mail the registration
card. Apparat will limit its assistance and patches (zaps) to registered
owners only. In your communications with Apparat, always state your name,
address and your NEWDOS/80's registration number. For Version 1 of NEWDOS/80
we had many complaints of not receiving zaps from users who had not sent in
the registration card. Apparat does not require the owner to agree to
anything when filling out the NEWDOS/80 Version 2 registration card; just let
us know who you are.

1.2. Trademark Credits.

Throughout this manual, certain trademarked names will be used to refer to
those trademarked products. Since our printers do not have the tm symbol, we
will acknowledge the trademarked names here. If we have missed rendering an
acknowledgement, please forgive us as we do not mean for any trademarked name
to be used to refer to anything that the trademark holder does not mean it to
refer to. In some cases, such as VTOS, the primary manual for that system
shows the name trademarked but does not say who it is trademarked to.

1. TRS-80 is a registered trademark of Radio Shack, Inc.
2. TRSDOS is a registered trademark of Radio Shack, Inc.
3. VTOS is a registered trademark.
4. LDOS is a registered trademark of Lobo Drives International.
5. DOUBLER is a registered trademark of Percom Data Company, Inc.
6. SCRIPSIT is a registered trademark of Radio Shack, Inc.

1.3. What Is Apparat's DOS/80 Version 2?

Almost all disk based computer systems use a Disk Operating System (known as
a DOS) to provide a software interface between the user program performing
disk I/O and the actual disk drives and their controllers. Usually these
operating systems perform many other functions as well such as controlling
what user program is executing and the allocation of disk files and file
space. Believe it or not, the primary function of a DOS is to make life
easier for the computer users and programmers. NEWDOS/80 is one of a number
of DOSs that operate with the TRS-80; in this case only the Model I and Model
III are supported.

NEWDOS/80 Version 2 is the replacement for NEWDOS/80 Version 1 that was
released in June of 1980 and for NEWDOS/21 that was released in March of
1979. NEWDOS/80 Version 2 is a disk operating system designed to operate on
the TRS-80 Model I and the TRS-80 Model III. A particular NEWDOS/80 Version 2
master diskette is tailored to operate on only one of the two TRS-80 models;
if you wish to operate on both the Model I and the Model III, you must
purchase different NEWDOS/80's for each. The TRS-80 model being used must

INTRODUCTION 1-2

have at least 32K of RAM and at least one 5 inch, single sided, 35 (40 for
the Model III) track disk drive (mounted on drive 0). Model I NEWDOS/80
Version 2 is distributed on a 35 track, single sided, single density
diskette, and Model III NEWDOS/80 Version 2 master diskette is distributed on
a 40 track, single sided, double density diskette. You must have a disk drive
capable of handling the master diskette.

NEWDOS/80 Version 2 for the Model I and NEWDOS/80 Version 2 for the Model III
are mostly downward compatible with NEWDOS/80 Version 1, NEWDOS/21 and Model
I TRSDOS 2.3, but it will be necessary to maintain certain programs with
different copies for all four systems for incompatibilities do exist.
NEWDOS/80 Version 2 is more incompatible with the Model III TRSDOS than it is
with the Model I TRSDOS, and most programs and files will have to be
maintained differently in the two systems. In the past, while TRSDOS was
largely dormant, attempts were made to limit the incompatibilities between
NEWDOS and TRSDOS, but now that TRSDOS is being actively updated more and
more incompatibilities are appearing between the two systems. TRSDOS is going
one way; NEWDOS/80 is going another. If this limits and eventually destroys
NEWDOS's usefulness to the users, so be it.. NEWDOS cannot and should not
exist to be a mirror image of TRSDOS; if the user wants that, then please use
TRSDOS. NEWDOS was accidentally created in the huge vacuum left by Model I
TRSDOS, has always incorporated features not in TRSDOS and, in Version 2, has
not implemented many of the newer features of the Model III TRSDOS. Chapter
12, sections 12.1 through 12.5 give some of the incompatibilities of
NEWDOS/80 Version 2 with NEWDOS/80 Version 1 and with the Model I and III
TRSDOSs.

The DOS and DISK BASIC portions of NEWDOS/80 are total rewrites from that
offered in NEWDOS/21. The requirement that the user purchase TRSDOS as a
precondition of use of NEWDOS/21 is not required for NEWDOS/80. It is still
recommended that the user purchase TRSDOS, and NEWDOS/80 users are expected
to have purchased the TRSDOS manual and be knowledgeable of its contents as
use of NEWDOS/80 assumes this user knowledge. Users of the EDTASM module are
still required, as a precondition of use of NEWDOS/80's EDTASM, to have
purchased Radio Shack's tape editor/assembler.

Though NEWDOS/80, Version 2 was tested more extensively than Version 1, there
will still be errors, and many programs will require at least a zap to work
with NEWDOS/80 Version 2. Error reporting procedures are discussed in chapter
11, and the outstanding zaps are in chapter 13.

1.4. Duplicate and Specify the System.

NEWDOS/80 is not a simple system. When the NEWDOS/80 user is ready to
initially use NEWDOS/80, he/she should spend one to two hours studying the
documentation before doing anything with the NEWDOS/80 diskette.

When ready, put a write protect tab on your NEWDOS/80 Version 2 master
diskette. Then power up your computer, place the master diskette in drive 0
and press reset. The NEWDOS/80 banner should appear optionally followed by
requests for date and time. If date and time are requested, please give
realistic values. Next, NEWDOS/80 READY will be displayed to indicate DOS is
waiting for something to do.

INTRODUCTION1-3

It is good practice to never mount on a disk drive the NEWDOS/80 master
diskette except to make copies of the diskette and to very carefully apply
mandatory zaps (see chapter 11). When zapping, you should first apply the
zaps to a working Version 2 system diskette and test them out before applying
them to the master diskette. Keep the master diskette stored away in a safe
place; do not keep it in your NEWDOS/80 manual and do not use it in normal
operations. Apparat will not replace a lost master diskette though it will,
under the terms for the diskette update service offered in section 11.9,
replace a damaged diskette.

Enter, via the keyboard, the DOS command:

LIB

A list of all the DOS library commands will be displayed to you. These
commands are defined in chapter 2 with examples.

Enter the DOS command:

DIR,0,S,I

A list of all the files on the NEWDOS/80 Version 2 master diskette will be
displayed. These files, except for NWD82V2/ILF and NWD82V2/XLF, are discussed
in chapter 5.

Enter the DOS command:

SYSTEM,0

NEWDOS/80 offers the user certain system options, which are specified via the
DOS library command SYSTEM (see section 2.46) and activated during each
computer reset. The DOS command SYSTEM,0 you just executed has displayed the
state of all SYSTEM options, and you should compare these value carefully
against the specifications. You may decide that your system is to use
different SYSTEM specifications. You may change them now if absolutely
necessary; otherwise you should wait until after you have made a few backup
copies of the master diskette. Whenever you decide to update the master
diskette, don't forget to take off the write protect tab.

Enter the DOS command

PDRIVE,0

NEWDOS/80 can operate with a limited mixture of disk drive and interface
types. The characteristics of each of the physical drives 0 - 3 must be
specified to the system via the DOS library command PDRIVE (see section
2.39). These characteristics are then read by DOS during each computer reset.
The PDRIVE command you just executed has displayed the existing drive
specifications plus 6 pseudo drive specifications. You may want to change the
specifications for one or more drives. You may do so now if absolutely
necessary; otherwise you should wait until you have a few backup copies of
the master diskette.

Now you must make three or more copies of the NEWDOS/80 Version 2 master
diskette. If possible, perform these initial backups without changing any of
the SYSTEM or PDRIVE parameters. If not possible, change them the minimum

INTRODUCTION 1-4

necessary and do a reset when done. You should carefully study sections 2.14,
2.39 and 2.46.

NEWDOS/80 does NOT have a BACKUP module; format 5 or 6 of DOS library command
COPY (see section 2.14) is used instead. For each of the backups you are
about to do, the master diskette is both the system and the source diskette
while the destination diskette is the diskette to contain the new working
copy of the NEWDOS/80 system. Some examples of the COPY command you will use
to make copies of the NEWDOS/80 Version 2 master diskette are:

COPY,0,0,,FMT,USD For a single drive system where the master and copy
diskettes have the same PDRIVE characteristics.

COPY,0,1,,FMT,USD For a multiple drive system where the master and copy
(mounted on drive 1) diskettes have the same PDRIVE characteristics.

COPY,0,0,,FMT,USD,CBF,DPDN=4 For single drive system wherein the
destination diskette has PDRIVE characteristics different from the master
diskette. You must have previously altered the master diskette PDRIVE
specification for drive 4 (remember to use the A option or to reset the
computer after changing the drive 4 specification).

COPY,0,1,,FMT,USD,CBF For a multiple drive system where the drive 1 drive
will be moved to drive 0 after the copy and the destination drive has
different PDRIVE characteristics than does the current drive 0. You must
have previously altered the master diskette's PDRIVE specification for
drive 1.

Each system diskette has its own set of SYSTEM and PDRIVE characteristics.
Therefore, for each working copy of NEWDOS/80 Version 2 you make, after the
copy is completed, you need to set that system diskette's SYSTEM and PDRIVE
characteristics for the operating conditions it is to operate with.

The NEWDOS/80 owner is authorized to make as many copies as necessary of the
NEWDOS/80 diskette or individual programs thereon for his/her own personal
use. NEWDOS/80 owners and users are specifically prohibited from copying the
NEWDOS/80 diskette or individual programs thereon for use by others. See
COPY, formats 2 and 4, in section 2.14.

1.5. Apply Outstanding Zaps.

Before your NEWDOS/80 is ready to run user programs, review the outstanding
zaps to both NEWDOS/80 modules and to other modules (such as EDIT/CMD and
SCRIPSIT) that require patches to work properly with NEWDOS/80. Chapter 11
explains how to apply zaps (patches), and with your NEWDOS/80 should have
come a chapter 13, which contains the zaps. If part or all of chapter 13 is
not in the proper place in the manual please put it there. Mandatory zaps
must be applied; optional zaps are at user discretion.

Mandatory zaps to NEWDOS/80 modules should be applied to all copies of the
NEWDOS/80 Version 2 master diskette and to the NEWDOS/80 Version 2 master
diskette. DO NOT start applying the zaps until you have at least 2 or 3 good
backup copies made of the NEWDOS/80 diskette.

INTRODUCTION1-5

1.6. Commence Using NEWDOS/80.

Once all backup copies of the NEWDOS/80 Version 2 system are made, zaps
applied, system options and drive characteristics specified, you are now
ready to use NEWDOS/80.

Put away the master diskette and mount in drive 0 one of the system diskette
just made. -Then press reset to re-initialize DOS using the new diskette.
NEWDOS/80 READY will then appear. The user may now type in a DOS command,
which is either a-DOS library command as discussed in chapter 2 or the name
or name/ext of a user program to be loaded and run. If a user program does
not have a name extension, name extension CMD is assumed. Examples:

BASIC causes the load and execution of program BASIC/CMD.

SCRIPSIT/LC causes the load and execution of program SCRIPSIT/LC.

If the DOS library command or the user program requires or allows for
parameters within the DOS command, one or more spaces or a comma must follow
the command name and precede the parameter(s). Examples:

BASIC,5,65000
DIR 1 A

For virtually all programs to be executed under NEWDOS/80, there are
instructions on how to use the program that usually comes with the program
when you buy it. For NEWDOS/80 program modules, the instructions are in
chapter 6 except for BASIC, which is covered in chapters 7 and 8.

Those users upgrading from NEWDOS/80 Version 1, NEWDOS/21 or TRSDOS to
NEWDOS/80 Version 2 should read sections 12.1 through 12.5 carefully.

1.7. Apparat Thanks Its Beta Testers.

Over forty persons throughout the United States and Canada were involved in
the testing of NEWDOS/80 Version 2, finding errors, suggesting enhancements
and providing criticism. Apparat and the NEWDOS/80 author thank each one of
these beta testers for the long hours spent working with the three beta
releases that were sent out. It is Apparat's policy that each beta tester
receives a complimentary copy of the final release of NEWDOS/80 Version 2.

DOS LIBRARY COMMANDS2-1

2. DOS LIBRARY COMMANDS

2.1. Notation Conventions and General Information.

All DOS commands terminate with an ENTER. In subsequent specifications, the
ENTER is not shown, but the user is to supply it.

DOS commands are limited to a total of 80 characters, including the
concluding ENTER.

[] A set of brackets are used to enclose an optional parameter. When
using the optional parameter in a DOS command, the [] are not included.

Example:
[,PROT=xxx][,ASE=yn][,ASC=yn]

could be coded as
,PROT=READ,ASC=N

Uppercase A - Z and non-alphanumeric characters are to be included exactly as
shown. See the above example.

Lower case letters or words with or without trailing decimal digits. These
represent prototype values for which the user is to substitute the
appropriate actual values. See the above example.

In some cases where the prototype will be replaced by one and only one
character, the prototype word contains, in lower case, all the characters
legal for that value. This helps serve as a reminder of which characters are
legal replacement for that prototype value. For example, if ASC=Y and ASC=N
are the only two legal ASC values, then the prototype will usually be written
as ASC=yn.

Where commas are used in DOS commands, they may be replaced by one or more
consecutive spaces.

Numeric values without a suffixed H are considered decimal values unless
otherwise specified. Hexadecimal values must be suffixed with an H unless
otherwise specified. Example:

4000H and 16384 are the same value.

When specifying a disk file, the term 'filespec' is used. A filespec is of
the form:

name1[/ext1][.password1][:dn1]

Parameters must be specified in the above order.

name1 is the file's name consisting of 1 - 8 chars of which the first
must be A - Z and the others A - Z or 0 -9.

ext1 is the name extension (i.e., CMD, BAS, OBJ, CIM, TXT, DOC, COM,
etc.) which classifies a file. A file need not have a name extension, but
if it does it must be 1 - 3 chars of which the first must be A - Z and

DOS LIBRARY COMMANDS 2-2

the others A - Z or 0 - 9. If a file has a name extension, all filespecs
referencing the file must include the name extension, unless a default
name extension is provided for (i.e., /CMD).

password1 is 1 - 8 chars of which the first must be A - Z and the others
A - Z or 0 - 9. Password1 is the value given to both the access and
update passwords for a file when it is created. Password1 is value used
in password checking when an existing file is opened. Password1 is
required in a filespec if passwords are enabled and the file has
passwords assigned; otherwise, it is not.

dn1 is the drive # of the drive which has the diskette containing the
file. Examples:

MYFILE80/BAS.YOURPW80:0
MYFILE:3
YOURFILE.YOURPW

NEWDOS/80 will accept lowercase in all DOS library commands and any further
input that might be queried for.

For each DOS library command, the command keyword is stated along with a
brief definition. Next, if the command is allowed parameters, a prototype of
the command is given, listing all required and optional parameters. Next
comes explanations of the command, parameters and options. Lastly, some
examples of the DOS command are given.

For documentation ease, the prototype command is sometimes shown spread over
multiple lines in this document; however, the user should consider each
command as one contiguous statement.

Unless otherwise stated, a DOS library command is executable under MINI-DOS
(see section 4.2).

NEWDOS/80 differs from TRSDOS in NOT using parenthesis to enclose parameters.
In NEWDOS/80 version 1, parenthesis around the operands were optional for
BREAK, CLOCK, DEBUG, DIR, PROT, and VERIFY; they are NOT allowed in version
2.

In the same vein, version 1 allowed the keywords ON or OFF to be used instead
of Y or N in the DOS commands BREAK, CLOCK, DEBUG and VERIFY; this is NOT
allowed in version 2.

2.2. APPEND Append one file onto the end of another.

APPEND,filespec1,[TO,]filespec2

This command will append the file filespec1 onto the end of the file
filespec2. The EOF from file filespec2's directory FPDE determines the point
at which file filespec1 is appended. This may be trouble if file filespec2
had explicit EOF characters, such as in BASIC program files or assembler
source files.

DOS LIBRARY COMMANDS2-3

File filespec1 is not altered. The original contents of file filespec2 are
not altered; the file is only added to.

APPEND is not executable under MINI-DOS.

APPEND examples:

1. APPEND,XXX:1,YYY/DAT:0 The contents of file XXX on drive 1 are
appended onto the end of file YYY/DAT which is on drive A

2. APPEND AAA TO BBB The contents of file AAA are appended onto the end
of file BBB. DOS searches the currently mounted diskettes to find both
files.

2.3. ATTRIB Assign attributes to a file.

ATTRIB,filespec1[,INV][,VIS][,PROT=xxx][,ACC=password1][,UPD=password2]
[,ASE=e][,ASC=c][,UDF=u]

This command assigns attributes to the filespec1 file. At least one of the
optional parameters must be specified.

If passwords are enabled in your system, then filespec1 must specify the
existing update password, if any, for that file.

INV gives the file the invisible attribute. Unless the I option is specified
in DIR, the file will not be listed by AIR.

VIS takes away the invisible attribute, whether the file had it or not.

PROT=xxx specifies the access level to be used during file I/O if passwords
are enabled (see system option AA) and the access, not the update, password
was used to open the file. The levels are defined for values of xxx as:

LOCK Level 7. No access allowed to the file at all, except by the
system's overlay loader.

EXEC Level 6. Access allowed only to execute the file as a program.
BASIC will require either RUN or LOAD with R option, and will disable the
BREAK key, thereby preventing the user from stopping the RUN and disal-
lowing direct statement execution.

READ Level 5. Access allowed for execute or to read the file's
contents.

WRITE Level 4. Access allowed for execute, read or write of the file.

RENAME or NAME Level 2. Access allowed for execute, read, write or to
rename the file.

KILL Level 1. Access allowed for execute, read, write, rename or to
kill the file.

DOS LIBRARY COMMANDS 2-4

FULL Level 0. All operations are allowed on the file.

ACC=password1 Password1 is assigned as the access password for the file. If
null, a value of all blanks is assumed; otherwise the value must be 1 - 8
characters with the 1st = A - Z and the others A - Z or 0 - 9. Assigning the
access password via this parameter of ATTRIB is the only way that will enable
use of the PROT=xxx protection and then only if the access password is
different from the update password. If a password is specified when the file
is created, it is assumed both the update and the access password, and the
update password has priority at open time. If passwords are enabled, the
password specified in the filespec at open time is not the update password,
and it is the access password, the current protection level is stored into
the FCB for later use by the DOS read, write, load, etc. routines.
Subsequently, if an access is attempted in violation of the access level,
'ILLEGAL ACCESS TRIED TO A PROTECTED FILE' error will occur.

UPD=password2 Password2 is assigned as the update password for the file. The
update password is of the same configuration as the access password. During
file open where passwords are enabled, the password specified in the filespec
is checked first against the file's update password. If they match, then FULL
access is allowed to the file.

ASE=e where e is either Y or N. This parameter has been added to allow DOS to
automatically allocate diskette space to a file if ASE=Y or to disallow
further allocation if ASE=N. ASE=Y is the default condition when a file is
created.

ASC=c where c is either Y or N. This parameter has been added to allow DOS to
automatically deallocate file diskette space beyond the EOF during a CLOSE
operation if ASC=Y is specified, and to disallow this deallocation if ASC=N.
ASC=Y is the default setting when a file is created.

UDF=u where u is either Y or N. This parameter has been added to mark the
file as updated if UDF=Y is specified or to clear the updated mark if UDF=N
is specified. The DOS system marks a file as updated whenever it is about to
update a sector to that file and it finds the file's directory entry not
marked as updated.

ATTRIB command examples:

1. ATTRIB,XXX/CMD:1,UPD=ZXCVB,ACC=NMLKJ,PROT=EXECAssigns to file
XXX/Crib located on drive 1 the update password ZXCVB, the access
password NMLKJ and protection level 6 which allows the program to be
executed but not read or written to. Since the filespec XXX/CMD:1 did not
specify a password, we must assume that either password checking was
disabled (SYSTEM option AA=N) or the file did not have an update password
prior to the ATTRIB command.

2. ATTRIB YYY/DAT.QZBV INV ASE=N ASC=N UDF=N This command tests if
file YYY/DAT has update password QZBV, and if so, assigns the file the
invisible attribute, flags that extra space allocation and excess space
deallocation are not to be allowed, and lastly clears the file's updated
flag.

DOS LIBRARY COMMANDS2-5

2.4. AUTO Define the DOS command to be executed at reset.

AUTO[,doscmd]

This command allows the user to specify a 1 - 31 character DOS command to be
invoked automatically at reset time. This command is stored in the last 32
bytes of GAT sector of the current system diskette.

If doscmd is not specified, then a null command is stored in the GAT sector
to indicate to reset/power-on that no AUTO command exists.

If SYSTEM option AB = N and BC = Y, by pressing ENTER during reset, the auto
command in the GAT sector will be ignored, and the system will go to DOS
READY.

AUTO is useful to the user who usually executes the same command or chain of
commands (see CHAIN, sections 2.9 and 4.3, and DO, section 2.19) at reset
time. By setting system option AB=Y or BC=N, the user is forced to this
command or chain of commands, thus allowing the persons) controlling a
computer to restrict the activity of users of the computer.

AUTO command examples:

1. AUTO BASIC RUN"XXX/BAS" causes subsequent reset/power-ons to
activate BASIC and to start the execution of the BASIC program XXX/BAS.

2. AUTO DO RSACTIONcauses subsequent reset/power-ons to activate
chaining from file RSACTION/JCL, thus executing the DOS and other program
commands contained therein.

3. AUTO causes subsequent reset/power-ons to go to the normal DOS
READY, awaiting the next DOS command to be inputted from the keyboard.

2.5. BASIC2 Activate non-disk BASIC (Model I only).

This command puts the system into non-disk BASIC. NEWDOS/80 is no longer in
the system.

2.6. BLINK Enable/disable cursor blinking.

BLINK[,yn]

BLINK or BLINK,Y Blinking of the display cursor is turned on.

BLINK,N Blinking of the display cursor is turned off.

SYSTEM option BH can be used to set the cursor blinking state at reset/
power-on.

DOS LIBRARY COMMANDS 2-6

2.7. BOOT Reset the computer.

On the Model I, this command deselects the drives and then executes Z-80 in-
struction HALT, which causes both a hardware and a software reset. For the
Model III, since HALT does not cause a hardware reset, this instruction
causes a jump to location 0 to execute a software reset.

2.8. BREAK Enable/disable the BREAK key.

BREAK(,yn]

BREAK or BREAK,Y The BREAK key is enabled as a normal input key
(hexadecimal code 01) until the next normal DOS READY, when it is set
according to system option AG.

BREAK,N The BREAK key is disabled as a normal input key until the next
normal DOS READY, when it is set according to system option AG.

The BREAK command is useful for those programs that want the BREAK key
enabled, and enables it via a DOS-CALL (vector 4419H). The same applies to
programs that definitely want BREAK disabled. NOTE: Executing BREAK from DOS
READY is useless since the immediate return to DOS READY resets the BREAK key
according to system option AG.

In NEWDOS/80 the BREAK key may also be enabled by storing a 0C9H byte in
Model I location 4312H (Model III location 4478H) and may be disabled by
storing a 0C3H byte in that location. In NEWDOS/80 version 1, the break key
was also manipulated by changing bit 4 of location 4369H (Model I only); in
version 2 for the Model I, setting or clearing this bit does nothing and is
harmless. However, programs on the Model III must NOT alter that bit, as that
location is now in the system buffer.

2.9. CHAIN Shift to keyboard input from disk.

CHAIN,filespec1[,sectionid]

DOS command DO performs exactly the same as CHAIN.

The purpose of the CHAIN command is to cause a predefined set of characters
to be treated as input from the keyboard. This predefined set of characters
has been previously stored in the file filespec1.

The CHAIN command places NEWDOS/80 in chaining mode, if not already there.
The file filespec1 is opened. If sectionid is not specified, the file is
positioned at the beginning. If sectionid is specified, the file is searched
for the matching sectionid record, leaving the file positioned at the byte
following the section ID record.

Subsequently, input that is supposed to come from the keyboard comes from the
chain file until chaining is terminated by the encounter of either end of

DOS LIBRARY COMMANDS2-7

file or end of section or until chaining is temporarily halted by the
execution of the DOS command CHNON,N.

Keyboard data is input from the chaining file in one of two modes.

If SYSTEM option AT = N, chaining operates in record mode. In this mode,
whenever NEWDOS/80, BASIC or any program requests a new record from the
keyboard via the standard ROM keyboard record input routine at 05D9H, the
record will come from the chain file. Any other requests for keyboard
input are honored from the keyboard and not the chain file.

If SYSTEM option AT = Y, chaining operates in byte mode. In this mode,
all requests for keyboard input characters via the standard keyboard
input routine are honored from the chain file.

The CHAIN command may be issued via DOS-CALL or via BASIC's CMD function.
When so, DOS does not immediately return to the calling program but instead
continues to execute commands from the chain file until either end of file,
end of section, command CHNON,N or command CHNON,Y is encountered.

CHAIN is not legal under MINI-DOS.

The chain file creator/maintainer is responsible for assuring that chaining
does not create impossible situations for the system or user programs.

NEWDOS/80 cannot have more than one chain file active at a time. If the new
DOS command from the current chain file is itself a CHAIN or DO command, pro-
cessing in the current file ceases and the new chain file is opened, becoming
the new current chain file.

When the system opens a chain file, name extension in the filespec defaults
to JCL if the filespec doesn't give one.

CHAINING is discussed further in section 4.3.

CHAIN or DO command examples:

1. CHAIN,XXX:0 Chaining starts at the beginning of file XXX/JCL:0.

2. DO YYY/CHN:1,QQQ Chaining starts at the first byte of the chain
section named QQQ within file YYY/CHN.

2.10. CHNON Alter chaining state.

CHNON,ynd

The CHNON command is used during chaining. An error will occur if a chain
file is not currently open. A CHNON command should not be the last entry in
an unsectioned chain file or the last entry in a chain file section as the
command will be meaningless.

CHNON,N The current position within the chain file is remembered and chaining
is temporarily suspended so that subsequent keyboard characters to come from

DOS LIBRARY COMMANDS 2-8

the keyboard. If chaining was being done under DOS-CALL, the current DOSCALL
level is exited.

CHNON,Y causes subsequent keyboard characters to come from the chain file,
starting at the current position within the chain file. If CHNON,Y was exe-
cuted as a DOS-CALL, the current DOS-CALL level is exited.

CHNON,D causes subsequent keyboard characters to come from the chain file,
starting at the current position within the chain file. If CHNON,D was exe-
cuted as a DOS-CALL, DOS remains at that level and executes subsequent
commands from the chain file until either CHNON,Y or CHNON,N or end of
section or end of file is encountered.

See sections 2.9 and 4.3 for further discussion of chaining.

2.11. CLEAR Clear user memory routes, timer and logical enqueues.

CLEAR[,START=addr1][,END=addr2][,MEM=addr3]

The CLEAR command performs the following functions:

1. Performs ROUTE,CLEAR DOS command function.

2. Dequeues all user routines in the timer interrupt routine chain that
were enqueued by the 4410H (Model I) or 447BH (Model III) call to DOS.
This includes turning the clock display off.

3. Dequeues all *name routines that were enqueued by a 4461H call to DOS.
This includes the NEWDOS/80 spooler, if active, but not its graceful ter-
mination. The spooler, if in use, should be fully terminated before
executing CLEAR.

4. Resets HIMEM to addr3 or, if addr3 not specified, to the highest
memory address.

5. Zeroes memory from addr1 or 5200H, which ever is greater, through
addr3 or HIMEM, whichever is lower. addr1 must be greater than or equal
to 5200H and less than or equal to addr3.

CLEAR command examples:

1. CLEAR,START=6000H,MEM=0DFFFH All routes are cleared, and all timer and
*name routines dequeued. HIMEM is set to 0DFFFH. The main memory between
6000H and oDFFFH is zeroed.

2. CLEAR All routes are cleared, and all timer and *name routines
dequeued. HIMEM is set to the highest main memory location, and all
memory from 5200H to HIMEM is zeroed.

DOS LIBRARY COMMANDS2-9

2.12. CLOCK Display the time every second.

CLOCK[,yn]

CLOCK or CLOCK,Y The current value of the clock is displayed every
second in positions 53-60 of the display's top line in HH:MM:SS format.

CLOCK,N The displaying of the clock ceases.

Users are warned that the clock will continuously lose time. There is no
hardware clock in the sense of seconds, minutes and hours. Computation of
clock time is done from the 25ms interrupt chain in the Model I (in the Model
III, it is done in the ROM from the timer interrupt). Whenever the interrupts
are left off for more than 25ms (33 or 40 ms on the Model III), one or more
interrupts are lost and for each one lost, the clock loses 25ms (33 or 40 ms
on the Model III). Lost interrupts are very frequent when disk I/O is being
done, is massive when tape I/O is done, and can also be frequent if other
routines hung off the 25ms chain are more than a few milliseconds long.

2.13. CLS Clear the display.

CLS simply clears the display, resetting it to 64 character mode. On the
Model III, reserved top display lines are not cleared.

2.14. COPY

The COPY command is used to copy a single file, multiple files or a full
diskette. COPY has 6 formats:

1. COPY,filespec1[,TO],filespec2[,SPDN=dn3][,DPDN=dn4]
2. COPY,$filespec1[,TO],filespec2[,SPDN=dn3][,DPDN=dn4]
3. COPY,[:]dn1,filespec1[,TO],filespec2[,SPDN=dn3][;DPDN=dn4]
4. COPY,[:]dn1,$filespec1[,TO],filespec2[,SPDN=dn3][,DPDN=dn4]
5. COPY,[:]dn1[=tc1][,TO],[:]dn2[=tc2],mm/dd/yy[,Y][,N]

[,NDMW][,FMT][,NFMT][,SPDN=dn3][,DPDN=dn4][,SPW=password1]
[,NDPW=password3][,DDND][,ODN=namel][,KDN][,KDD][,NDN=name2]
[,SN=name3][,USD][,BDU][,UBB]

6. COPY,[:]dn1[,TO],[:]dn2[=tc2],mm/dd/yy,CBF[,Y][,N]
[,USR][,/ext][,UPD][,ILF=filespec3][,XLF=filespec4][,CFWO]
[,NDMW][,FMT][,NFMT][,SPDN=dn3][,DPDN=dn4][,SPW=password1]
[,ODPW=password2][,NDPW=password3][,DDND][,ODN=name1]
[,KDN][,KDD][,NDN=name2][,SN=name3][,USD][,UBB]
[,DDSL=ln1][,DDGA=gc1]

The COPY command has been significantly changed in NEWDOS/80 version 2; all
users, new and old, should carefully read this section.

COPY cannot be executed under MINI-DOS; however for simple single file
copies, DOS library command MDCOPY is available.

DOS LIBRARY COMMANDS 2-10

dn1 and dn2 are drive numbers and may be equal. The colon preceding dn1
and/dn2 is optional.

Filespec1 is the source file's filespec. Filespec2 is the destination file's
filespec.

Filespec1 prefixed with $ means that either the source or the destination
file or both are to be on drive 0 and are on diskettes) that either (1) do
not contain a NEWDOS/80 system identical to the one on drive 0 when COPY was
initiated, (2) do not contain a NEWDOS/80 system, or (3) contain no system at
all.

During processing for formats 2, 3, 4, 5 and 6, the system may ask for
various diskette mounts; do what the prompts ask!!

1. When prompted for the system diskette, mount the NEWDOS/80 diskette
that was on drive 0 at the start of the COPY command execution.

2. When prompted for the source diskette, mount the diskette containing
file filespec1 (formats 1, 2, 3 and 4) or the data to be copied (formats
5 and 6).

3. When prompted for the destination diskette, mount the diskette to
contain file filespec2 (formats 1, 2, 3 and 4) or to receive the data
being copied (formats 5 and 6).

SPDN=dn3 Source PDrive Number. SPDN=dn3 tells the system that for all source
drive I/O, the system diskette's PDRIVE specifications (see DOS command
PDRIVE, section 2.37) for drive dn3 are to be used instead of the source
drive's normal PDRIVE specifications. dn3 is a value 0 to 9, referring to a
drive number listed by the PDRIVE command.

DPDN=dn4 Destination PDrive Number. DPDN=dn4 tells the system that for all
destination drive I/Os, the system diskette's PDRIVE specifications for drive
dn4 are to be used instead of the destination drive's normal PDRIVE
specifications. dn4 is a value 0 to 9 referring to a drive number listed by
the PDRIVE command.

Note that use of SPDN and DPDN for a drive 0 single drive COPY (formats
4, 5 or 6) means that three different PDRIVE specifications (one for the
system diskette, one for the source diskette and one for the destination
diskette) will apply during the COPY even though only one drive is used.

Format 1 is the single file copy. It is used to copy the contents of file
filespec1 to file filespec2. The diskettes) involved in the COPY must already
be mounted; the system gives no mount prompts. The contents of file filespec1
are not altered. The previous contents of file filespec2, if any, are lost.
If the leading part of filespec2 equals that of filespec1, filespec2 may be
shortened by leaving off the leading part, the remainder of filespec2
starting with / or . or :. For example:

COPY,USERFILE/DAT:0,TO,USERFILE/DAT:1

can be shortened to:

COPY,USERFILE/DAT:0,TO,:1

DOS LIBRARY COMMANDS2-11

Remember, the keyword TO is optional, and spaces may be used instead of
commas. Thus, the command could be written:

COPY USERFILE/DAT:0 :1

Format 2 is the same as format 1 except that the $ sign prefixed onto
filespec1 indicates that a conflict exists with drive 0, the system drive,
and DOS will prompt for the proper diskettes to be mounted on drive 0. If the
source and destination drive numbers are both zero but the source and
destination files are on separate diskettes, use format 4 instead of format
2.

Format 3 again is similar to format 1, except that the user has only 1 drive
available for the copy and file filespec1 resides on a diskette different
from that of file filespec2. Neither filespec can specify a drive number. DOS
will prompt for the mount of the source and destination diskettes as they are
needed. If drive 0 is specified, both the source and destination diskettes
must contain a NEWDOS/80 system identical to the one mounted on drive 0 at
the start of the COPY command; otherwise use format 4.

Format 4 performs similar to format 3 except that either file or both reside
on diskettes with different NEWDOS/80 systems, non-NEWDOS/80 systems or no
systems at all. DOS will prompt for the mount of the system, source and
destination diskettes as they are needed. Format 4 should only be used when
dn1 equals otherwise you are wasting time with diskette swaps that are not
needed.

Formats 2 and 4 allows suppliers of programs, whether free or purchased, to
send their program products on diskettes that do not contain NEWDOS systems.
Aside from the supplier's programs and/or data files, the diskette need only
contain the directory and the BOOT/SYS file, both created on each diskette
during formatting. Suppliers must not include a NEWDOS system on their disk-
ettes unless they have made explicit arrangements with Apparat.

NEWDOS/80 does not have a diskette BACKUP program. Instead, either formats 5
or 6 is used. Format 5 is a full diskette sector by sector copy without con-
cern for the number and type of files. Format 6 copies some or all of the
source diskette's files onto the destination diskette. Of the two, for the
same amount of data transmitted, format 5 is faster while format 6 allows
greater variation between source and destination diskette types and tries to
reassign files to contiguous space.

Format 5 is a full diskette copy. The default specifications for the two
drives are the PDRIVE specifications currently being used by DOS. The drives
must have the same number of sectors per track, granules per lump and sectors
per granule (five is the current NEWDOS/80 standard); otherwise format 6 must
be used. The destination diskette may have more tracks than the source; if
so, the destination directory is adjusted to account for the extra free
granules (not done if BDU option specified). Format 5 options are defined as
follows:

=tc1 DOS is to use the value tc1 as the source diskette's track count during
the COPY rather than the source drive's default value.

=tc2 DOS is to use the value tc2 as the destination diskette's track count
during the COPY rather than the destination drive's default value.

DOS LIBRARY COMMANDS 2-12

mm/dd/yy is the date to be placed in the destination diskette date
fie1d. The mm/dd/yy may be nulls and if so the system date is used. The
only time mm/dd/yy may be entirely left out of the format 5 COPY command
is when the command has only the two drive number parameters (example:
COPY 0 1). Otherwise mm/dd/yy must be the 3rd parameter even if it is
null or to be overridden by either the KDD or the USD parameter. If the
mm/dd/yy is null, this must be so indicated by separating commas (not
spaces)
(example: COPY 0 1,,FMT CBF).

Y The user doesn't care what was previously on the destination
diskette. Y is mutually exclusive with N, ODN, ODPW, DDND, KDN or KDD. Y
is the default (for COPY) if none of its mutual exclusions are specified.

N At the start of the COPY or FORMAT the destination diskette
must not contain recognizable data, i.e., should be in a bulk erase
state. COPY will be terminated if the diskette is found to contain data.
N is mutually exclusive with Y, ODN, ODPW, DDND, KDN or KDD.

NDMW No Diskette Mount Waits. DOS is to assume that all needed disk-
ettes are already mounted on the specified drives. No mount prompts or
error prompts are displayed. If an error occurs that otherwise would have
caused a prompt, the copy will be terminated. If NDMW is specified and
neither FMT nor NFMT are specified, FMT is assumed. NDMW is intended for
use when COPY (or FORMAT) is invoked via DOS-CALL (i.e., from BASIC) and
the calling program does not want operator interaction. Since NDMW causes
the COPY or FORMAT to bypass error and disk mount queries, it is recom-
mended that NDMW normally not be used when the operator is keying in the
COPY (or FORMAT) command.

FMT Format. DOS formats the destination diskette before copying
data. FMT is mutually exclusive with NFMT. If neither FMT or NFMT is
specified and NDMW was not specified, the operator will be queried
'FORMAT DISKETTE? (Y OR N)'. If neither FMT or NFMT is specified and NDMW
was specified, FMT is assumed.

NFMT No Format. DOS does not format the destination diskette before
copying data. The user must assure that the destination diskette is al-
ready formatted correctly. NFMT is mutually exclusive with FMT.

SPW=password1 Source Password. If passwords are enabled (system option
AA = Y) and system option AR = N, then COPY requires a source diskette
master password match. If password1 does not match the source diskette's
password, the copy function will be terminated.

PDPW=password3 New Destination Password. Password3 must conform to rules
for passwords and is assigned as the destination diskette's new password.
NDPW is mutually exclusive with BDU.

DDND Display Destination old Name and Date. The destination disk-
ette's old name and date are prompted to the display, allowing the opera-
tor to decide whether or not to proceed with the copy. DDND is mutually
exclusive with Y, N, and NDMW.

ODN=name1 Old Destination Name. If the destination diskette's old
name is not equal to name1, then the system prompts, allowing the

DOS LIBRARY COMMANDS2-13

operator to decide whether to proceed with the copy. ODN is mutually
exclusive with Y, N and NDMW.

KDN Keep Destination diskette Name. The destination diskette keeps
its old name rather than receive the source diskette's name. KDN is mu-
tually exclusive with Y, N, BDU and NDN.

RDD Keep Destination diskette Date. The destination diskette keeps
its old date rather than receive the mm/dd/yy parameter from the COPY
command. KDD is mutually exclusive with Y, N, BDU and USD.

NDN=name2 New Destination Name. The destination diskette takes name2 as
its name, rather than receive the source diskette's name. Name2 must
conform to the specification for diskette names. NDN is mutually exclu-
sive with BDU and KDN.

USD Use Source Date. The destination diskette uses as its date the
source diskette's date, rather than receive the mm/dd/yy parameter from
the COPY command. USD is mutually exclusive with KDD and BDU.

SD=name3 Source diskette Name. If the source diskette's name is not
equal to name3, a prompt is issued, allowing the operator to decide
whether or not to proceed with the copy.

BDU Bypass destination Directory Update. Aside from simply copying
the source sectors onto the destination diskette, the format 5 COPY also
updates the boot and PDRIVE data in the destination file BOOT/SYS and, as
necessary, the name, date, password and extra granule information into
file DIR/SYS. There are times, however, when this file updating is not
wanted, and by specifying option BDU these updates are bypassed. BDU is
useful when the source diskette has a bad directory, has a non-standard
directory (such as a TRSDOS Model III directory) or has no directory at
all or when the user wants a full diskette copy with no alterations. BDU
is mutually exclusive with KDN, NDN, NDPW and USD.

UBB Use Big Buffer in NEWDOS/21 and NEWDOS/80 version 1, COPY was
restricted to using main memory below 7000H unless it was a two diskette,
single drive COPY, in which case all of memory to HIMEM was used. If a
user wanted to force the usage of all memory to HIMEM, the UBB parameter
had to be specified. However, in NEWDOS/80 version 2, all of main memory
to HIMEM is used unless the COPY was invoked under DOS-CALL (i.e., from
BASIC), in which case only main memory below 7000H is used. Thus, in
NEWDOS/80 version 2, UBB is a useless parameter left in existence only
for upward compatibility from Version 1.

Format 6 is the multiple file COPY and is distinguished from format 5 by the
inclusion of the CBF (Copy By File) option. Though format 5 is the faster way
to backup a diskette, format 6 offers more flexibility, allowing files to be
copied between diskettes and drives of widely varying characteristics. The
choice of files to be copied can be limited by the combined effect of options
USR, /ext, UPD, ILF, XLF and CFWO; if one or more criteria are specified,
only those files satisfying all the criteria are copied. Format 5's options,
except BDU, are used in format 6 as well as the following additional options.

If NFMT is specified, then none of Y, N, KDN, KDD, NDN, BDU, USD, NDPW,
DDSL, DDGA or tc2 may be specified, ODPW may be required, and system

DOS LIBRARY COMMANDS 2-14

files are not copied unless already existent in the destination file
directory.

If NFMT is not specified, then the destination file is formatted as if
the command was FORMAT, including establishing BOOT/SYS and AIR/SYS.
Then, before any files are copied, all files to be copied are entered
into the destination diskette's directory. This is necessary as system
files must occupy the same directory FPDEs in order for DOS to work at
all.

CBF Copy By File CBF, required for and used only in format 6,
indicates the copy will be done by files rather than in straight
sequential order of diskette sectors.

USR copy user files. Only user files are copied; system and invis-
ible files are excluded.

/ext copy files having name extension ext. Only files with name ex-
tension ext are copied. ext is a 0 to 3 character name extension.
Examples of this parameter are /CMD, /, /BAS, /X.

DPD copy updated files. Only files that have the updated flag on in
the source diskette directory are copied. This flag is turned on by the
standard DOS sector write routine to indicate that at least one sector
has been written or re-written to this file since the last time the
updated flag was cleared. This flag is turned off by specific request via
the PROT or ATTRIB commands and is NOT turned off by COPY. Since the
standard DOS sector write routine is used to write the file's sectors to
the destination diskette, the updated flag is turned on for the copied
destination files.

ILF=filespec3 Include List File Filespec3 specifies a file containing a
list of files to be copied. If a file is not in the list, it is not
copied. It is not an error if an included file is not on the source disk-
ette. Within the list, each file to copied is specified by its name/ext
followed by a EOL char (0DH). If a specification begins with a semi-
colon, it is bypassed as a comment. Each specification, except comment,
is limited to a maximum of 13 characters, including the EOL. On reading,
the file's bytes are modulated into the ASCII range 0 to 127. The file
can be made using SCRIPSIT, but the user must assure that no characters
other than null (00H) follow the last EOL character; SCRIPSIT tends to
leave extraneous characters so a delete-to-end-of-text should be done.
ILF is mutually exclusive with XLF.

XLF=filespec4 Exclusion List File. The file filespec4 is the same
structure as specified for ILF above and specifies the files to be ex-
cluded from the COPY. It is not an error if an excluded file is not on
the source diskette. XLF is mutually exclusive with ILF.

CFWO Check File With Operator. For the qualifying files, DOS asks
the operator, one file at a time, if the file is to be copied to the
destination diskette. Reply Y if the file is to be copied, reply N if not
to be copied, reply R if to restart entire CFWO query sequence, or reply
Q if no more files to be copied. No files are copied until the querying
is completed.

DOS LIBRARY COMMANDS2-15

ODPW=password2 Old Destination diskette Password. If NFMT is specified,
if passwords are enabled and if system option AR = N, then copy requires
a destination diskette password match. If password2 does not match the
destination diskette's password, the copy is terminated.

DDSL=ln1 Destination diskette Directory Starting Lump. Formatting
will start the directory on the 1st sector of lump IS if DDSL is
specified; otherwise the default starting lump number for the drive (see
PDRIVE command) will be used: DDSL is mutually exclusive with NFMT.

DDGA=gc1 Destination diskette Directory Granule Allocation.
Formatting will allocate gc1 (value 2 - 6) granules to the directory if
DDGA is specified; otherwise it will assign the default # of granules for
that drive (see PDRIVE command). DDGA is mutually exclusive with NFMT.

If during a format 6 COPY, the destination diskette has insufficient space to
contain a file, "DISKETTE FULL = name/ext" is displayed and the destination
file's EOF is set to 0. Though EOF is set to 0, any space the file may have
allocated to it is not deallocated.

A single drive format 5 or 6 COPY cannot be executed under DOS-CALL (i.e.,
from BASIC) since COPY under DOS-CALL restricts itself to main memory below
7000H and this would necessitate too many diskette swaps.

During a COPY or FORMAT where NDMW was not specified, pressing right arrow at
any time will cause the function to pause, awaiting ENTER to continue or up-
arrow to cancel. Pressing up-arrow at any time will terminate the function;
however, be careful as the state of the destination diskette will be unknown,
especially if the cancel comes during the actual formatting.

The COPY command and standard 40 track, double density, single sided, 5 inch
TRSDOS Model III diskettes may be used to transfer TRSDOS Model III diskette
files into or out of the NEWDOS/80 system. There are a number of restrictions
to this operation.

NEWDOS/80 cannot be used to format a TRSDOS Model III diskette; however,
once the user has a formatted empty TRSDOS Model III diskette, he/she may
duplicate it repeatedly under NEWDOS/80 using format 5 COPY with the NFMT
and BDU options, thus obtaining a stock of formatted, empty TRSDOS Model
III diskettes.

The user must assure that where the source and/or destination is a TRSDOS
Model III diskette the proper PDRIVE specs are invoked, either implicitly
or directly by the SPDN and/or DPDN parameter (see PDRIVE command example
3, section 2.37 for the exact PDRIVE specification).

A file need not previously exist on a TRSDOS Model III diskette in order
for it to be copied. NEWDOS/80 will allocate the proper directory entry
and diskette space.

Any of COPY formats 1, 2, 3, 4 or 6 may be used to copy files to or from
TRSDOS Model III diskettes. Remember, FMT must not be specified. If
format 6 is used and one of the source or destination is a TRSDOS Model
III diskette, then files marked as SYSTEM files (FPDE 1st byte, bit 6 =
1) are NOT copied.

DOS LIBRARY COMMANDS 2-16

Files copied between NEWDOS/80 and TRSDOS Model III are always readable
though not necessarily usable on the receiving system.

Examples of COPY:

1. COPY XXX:1 YYY:1 In this format 1 COPY, file XXX on the diskette
already mounted on drive one is copied as file YYY on that same diskette.

2. COPY,AAA,BBB:2 In this format 1 COPY, the currently mounted
diskettes are searched for the file AAA. If found, it is copied as file
BBB to the diskette already mounted in drive 2.

3. COPY SUPERZAP/CMD:0 :3 In this format 1 COPY, the file named
SUPERZAP/CMD is copied from diskette already mounted in drive 0 to the
diskette already mounted in drive 3. Since the file name and name exten-
sion are the same for both files, they were dropped from the second file-
spec.

4. COPY XXX:1 2 SPDN=9 In this format 1 COPY, SPDN=9 causes, for the
duration of the COPY only, all source file I/O to assume that drive 1 has
the characteristics specified for drive 9 in the PDRIVE specifications.
If we assume that the PDRIVE drive 9 specifications were those for a
Model III TRSDOS diskette (see PDRIVE example 3, section 2.37), this COPY
will copy file XXX from the TRSDOS Model III diskette already mounted on
drive 1 to the NEWDOS/80 diskette already mounted on drive 2.

5. COPY $XXX:1,YYY:0 In this format 2 COPY, the destination diskette
to contain file YYY is not the same diskette as was mounted on drive 0
when the COPY command was initiated. DOS will ask for the mount of the
destination and the system diskettes as it needs them.

6. COPY,$XXX:0 YYY:1 In this format 2 COPY, the source diskette
containing file XXX is not the same diskette as was mounted on drive 0
when the COPY command was initiated. DOS will ask for the mount of the
source and system diskettes as it needs them.

7. COPY 1 XXX YYY/DAT In this format 3 COPY, the diskette containing
file XXX is not the same diskette as the one to contain file YYY/DAT yet
both the source and destination diskettes are to use drive 1. DOS will
ask for the mount of the source and destination diskettes as it needs
them. Note that, as required for format 3 and 4, neither filespec
contains a drive number.

8. COPY 0 XXX/DAT /DAT In this format 3 COPY, file XXX/DAT on one
diskette is to be copied as file XXX/DAT on another. Both diskettes are
to be mounted on drive 0, and DOS will ask for them as needed. Since
drive 0 is used and this is format 3 rather than format 4, both the
source and destination diskettes must contain NEWDOS/80 systems identical
to that mounted on drive 0 when the COPY command was initiated.

9. COPY 0 $XXX/DAT /DAT This format 4 COPY accomplishes essentially the
same thing as the previous example. The difference is that DOS assumes
that neither the source nor the destination diskette contains the proper
NEWDOS/80 system; so DOS will ask for the mount of the system, source and
destination diskettes as it needs them.

DOS LIBRARY COMMANDS2-17

10. COPY 0 $XXX XXX SPDN=9 This format 4 COPY accomplishes the same
thing as in example 4 above excepting that only drive 0 is used. For the
duration of this COPY, drive 0 uses two sets of PDRIVE specifications.
The standard drive 0 specifications are used for the system and
destination diskette I/Os, and the system diskette's PDRIVE's drive 9
specifications are used for the source diskette I/Os. Note, in this
example, the second filespec was not foreshortened as there was nothing
to foreshorten.

11. COPY 0 1 06/01/80 FMT This format 5 COPY is an example of one
of the simplest and most commonly used forms of the full diskette COPY.
This COPY copies one diskette to another using drive 0 as the source
drive and drive 1 as the destination drive. Default track counts for the
associated drives are used as diskette track counts. Both drives, other
than possibly having different track counts (destination must be greater
than or equal to source), have the same characteristics. The operator
will be prompted for diskette mounts and error choices, if errors occur.
Default parameter Y is in effect, indicating the operator does not care
if the destination diskette previously contained data or not. The
destination diskette will be formatted before the entire source diskette
is copied to it, and it will receive the source diskette's name and
password. Its date will be set to 06/01/80. If the destination diskette
is to have more tracks than the source, they will be formatted and
properly accounted for in the directory such that the destination
diskette will be ready for use.

12. COPY 0 1,,NFMT This format 4 COPY is an example of an other
form of the simplest and most common full diskette copy. The only
difference between this example and the one above is (1) the destination
diskette is assumed already formatted, and (2) the current system date
will become the destination diskette's date.

13. COPY,0,0,06/0l/80,NFMT,USD,KDN,ODN=WATCHDOG,SN=GOODDATA
This format 5 COPY is somewhat the same as the previous example except
(1) this is a single drive, two diskette copy, (2) a prompt will be given
if the source diskette does not have the name specified, (3) a, prompt
will be given if the destination diskette does not have the name
specified, (4) the destination diskette will retain its old name, (5) it
will receive its date from the source diskette. Being a single drive, two
diskette copy, more mount prompts will be necessary than for a two drive
COPY. Also, because of the large number of diskette mounts that would be
involved, this single drive COPY cannot be executed via DOS-CALL (i.e.,
from BASIC).

14. COPY 0,1,,FMT,CBF This format 6 COPY is an example of one of the
simplest and most commonly used forms of multiple file COPY. The
destination diskette (to be mounted on drive 1) is to be formatted, and
it receives its name and password from the source diskette (to be mounted
on drive 0) and its date from the system date. Next, all of the source
diskette's files, excepting BOOT/SYS and DIR/SYS, are copied to the
destination diskette.

15. COPY 0,1,,NFMT,CBF This format 6 COPY is an example of another of
the simplest and mostly commonly used forms of multiple file COPY. The
differences between this and example 14 are (1) the destination diskette
is not to be formatted, (2) its name, password and date are not changed,

DOS LIBRARY COMMANDS 2-18

and (3) any source diskette system files (other than BOOT and DIR) that
did not already exist on the destination diskette are not copied.

16. COPY 0 1,,NFMT,CBF,USR This format 6 COPY is similar to the pre-
vious example except that system and invisible files are not copied.

17. COPY,0,1,,NFMT,CBF,USR,UPD This format 6 COPY is similar to
the previous example except that the only source files copied are those
marked as updated as well as not being either a system or an invisible
file. In this manner, only the files changed since the last backup are
backed up now. Remember, COPY does not clear the updated flags on the
source diskette; use DOS commands PROT or ATTRIB to do this.

18. COPY,2,3=60,06/01/80,FMT,NDMW,CBF,DDSL=29,DDGA=4
During this format 6 COPY no diskette mount prompts or error choices are
to be displayed; the system is to assume the diskettes are already pro-
perly mounted. The destination diskette is to be formatted with 60
tracks. The directory will start on lump 29, and will be allocated 4
granules. All source diskette files, except BOOT/SYS and DIR/SYS, will
be copied to the destination diskette.

19. COPY 2 3 06/01/80,CBF,CFWO,NFMT For this format 6 COPY, the
destination diskette is assumed previously properly formatted and may
contain existing files. For each source diskette file, excluding BOOT/SYS
and DIR/SYS, the operator will be asked if the file is to be copied to
the destination diskette. When all queries are done, the selected files
are copied, excepting that system files that did not previously exist on
the destination diskette are not copied. If the file already existed on
the destination diskette, the file's old data on the destination diskette
is lost.

2.15. CREATE Pre-allocate a disk file.

The CREATE command allows a user to create a file and optionally to write to
the file a specified number of null records, thereby allocating the file's
space as contiguously as possible, given the layout of the free space on the
diskette.

There are times when a user program expects one or more of the files it uses
to already exist, even though the files may not have any usable data in them;
therefore, the user must create the file prior to the program's first use.
Also, there are times when the efficiency of a program is reduced if a file's
diskette space is scattered all over the diskette; to avoid this, the user
should preallocate the needed file space to reduce this scattering.

CREATE,filespec1[,LRL=ln1][,REC=count1][,ASE=yn][,ASC=yn]

The CREATE DOS command creates new file filespec1 or alters the state of
existing file filespec1.

LRL=ln1 specifies the length of each record of the file. ln1
must be a value between 1 and 256; the default value is 256.

DOS LIBRARY COMMANDS2-19

REC=count1 specifies the number of records to be initially assigned
to a file.

ASE=yn This parameter indicates whether, subsequent to the
CREATE command, DOS may automatically allocate more diskette space to
this file as necessary. ASE=Y allows this; ASE=N disallows this. The
default is ASE=Y.

ASC=yn This parameter indicates whether the DOS close function
will be allowed to automatically deallocate excess diskette space. ASC=Y
allows this; ASC=N disallows it. The default is ASC=Y.

Enough diskette space is allocated to the file to provide for count1 records
each of length ln1. ln1 records of all zeroes are then written to the file,
establishing the file EOF at the end of those records. If ASE=N is specified,
the file is inhibited against further diskette space allocation, and if ASC=N
the file is inhibited against automatic deallocation of excess diskette
space.

CREATE command examples:

1. CREATE,XXX:1,LRL=30,REC=2000 File XXX is created, if it did not
already exist, on the drive 1 diskette. The record length is 30 and 2000
of these records, containing all 00H bytes, are written to the file. The
EOF is left at 60000. Subsequent DOS automatic space allocation and deal-
location for this file are allowed.

2. CREATE,YYY:2,200,ASE=N,ASC=N File YYY is created, if it did not
already exist, on the drive 2 diskette. The record length is 256 and 200
of these records, containing all 00H bytes, are written to the file. The
EOF is left at 51200. Subsequent DOS automatic space allocation and deal-
location for this file are not allowed.

3. CREATE,ZZZ:0 File ZZZ is created, if it did not
already exist, on the drive 0 diskette. The record length is 256, and the
EOF is set to 0. Subsequent DOS automatic space allocation and dealloca-
tion for this file are allowed.

2.16. DATE Set computer's current date.

DATE[,mm/dd/yy]

If no parameters are specified, the DATE command displays the current system
date in mm/dd/yy format.

If mm/dd/yy is specified, the date mm/dd/yy becomes the system date and is
set into the real time clock. mm is the month (value 01 - 12). dd is the day
(value 01 - 31). yy is the year (value 00 - 99). No check is made on the
validity of the 3 values except to limit them to 2 decimal digits. As the
clock reaches 24:00:00, it is reset to 00:00:00 and the date's day within
month value is incremented. For the Model I, no adjustment is made for end of
month or end of year. For the Model III, end of month and end of year
adjustments are done by the ROM.

DOS LIBRARY COMMANDS 2-20

At reset time, the date is set according to SYSTEM options AY or AZ.

Date command examples:

1. DATE display the system date.

2. DATE,08/1/81 set system date to August 1, 1981.

2.17. DEBUG enable or disable the DEBUG facility.

DEBUG[,yn]

DEBUG or DEBUG,Y DEBUG is enabled (but not entered). This enabling
causes a DEBUG entry whenever a user program (such as BASIC, SCRIPSIT,
PROFILE, EDIT, etc.) is activated. The DEBUG entry occurs after the program
load is completed but just before its first instruction is executed. The
purpose of this pre-execution DEBUG entry is to allow the debugging
programmer to change the state of a program or its initialization parameters
before the program commences execution.

DEBUG,N The above enabling is disabled. At reset/power-on time, DEBUG is
disabled.

This command has no effect on the operation of '123' (the simultaneous
depressing of the 1, 2 and 3 keys) to enter the DEBUG facility.

Refer to the section 4.1 for the DEBUG facility specifications.

2.18. DIR Display a diskette's directory information.

DIR[:][dn1][,A][,S][,I][,U][,/ext][,P]

This command displays directory information for the diskette mounted on drive
dn1 or if dn1 not specified, on the drive specified by system option AN.

The first display line contains the drive number, the diskette name, its
date, the number of tracks, the number of free FDEs and the number of free
granules. The values for track count and free granules are based on the
current active PDRIVE specification for that drive and if those
specifications are not proper, these displayed values may be in error.

The rest of the display contains file information.

If A is not specified, the files are displayed four to a line, giving for
each its name and name extension, if any.

If A is specified, DIR will list one file per display line with the display
line containing:

DOS LIBRARY COMMANDS2-21

1. The file's name.
2. The file's name extension, if any.
3. The file's EOF value in xxx/yyy format where xxx is the relative
sector number within the file and yyy is the relative byte number within
that sector.
4. The file's logical record size (LRL) in bytes.
5. The number of logical records (RECS) in the file including any partial
last record.
6. The number of granules (GRAMS) allocated to the file.
7. The number of diskette space extents (EXT) allocated where that number
divided by four and rounded up gives the number of directory entries used
by the file.
8. 12 flags providing file information, defined as follows:

1. S = system file.
2. I = invisible file, see ATTRIB DOS command.
3. U = file updated since last time update flags cleared by PROT
DOS command.
4. E = file will not be allowed to allocate more space that it
already has.
5. C = excess file space beyond EOF is not automatically released
during DOS close.
6. - 9. Reserved for future definition.
10. U = non-blank update password exists.
11. A = non-blank access password exists.
12. L = protection Level, see ATTRIB DOS command.

System files are not displayed unless S is specified.

Invisible files are not displayed unless I is specified.

If U is specified, only files marked as updated are displayed. Files marked
as updated are those files changed via the standard DOS I/O write routine
since the last time the update flags were cleared on the target diskette by
the PROT or ATTRIB DOS command.

If /ext is specified, only those files having the name extension ext are
displayed. ext is 0 to 3 characters. Example: DIR,1,/CMD will list all files
having extension CMD such as EDTASM/CMD.

If both U and /ext are specified, then only files satisfying both conditions
are listed.

When the display screen is full, DIR displays a '?' and waits for the user to
respond ENTER to continue or BREAK to terminate the DIR function.

If P is specified, the directory information is sent to the printer rather
than to the display. Caution, if the printer is not ready, the system will
hang waiting for it.

If $ is specified, DIR will ask for the mount of the target diskette before
the listing and will ask for the remount of the system diskette before
exiting. $ should only be used when drive dn1 = 0. There is no provision for
changing the PDRIVE specifications internal to the DIR command.

DOS LIBRARY COMMANDS 2-22

The user must remember that if dn1 is not specified, the default drive number
is that specified by SYSTEM option AN which is not necessarily 0.

DIR command examples:

1. DIR 0 Display the name and name extension of all
non-system, non-invisible files on the diskette currently mounted in
drive ~. The files will be listed four per display line.

2. DIR 0,S,I,P Same as the previous example except that system and
invisible files are also listed and that the listing is sent to the
printer instead of the display.

3. DIR 1,/DAT,U Display the name and name extension of all of the
current drive 1 files that are marked as updated and have name extension
DAT.

4. DIR 2,A All of drive 2's non-system, non-invisible files are
displayed, one file per display line. This display will usually involve
more than one display page with the user stepping from one page to the
next by pressing ENTER and, if desired; terminating the DIR function by
pressing BREAK.

5. DIR $0 Same as example 1 except the system will ask for the
mount of the target diskette on drive 0 and when DIR is done, it will ask
for the remount of the system diskette.

2.19. DO Shift to keyboard input from disk.

DO,filespec1[,sectionid]

The DO command executes exactly the same as the DOS command CHAIN (see
section 2.9).

2.20. DUMP Dump memory contents to disk.

DUMP,filespec1,start-addr,end-addr[,entry-addr[,relloc-addr]]

The DUMP command writes main memory image data from main memory to the file
filespec1, starting with the byte at start-addr and ending with the byte at
end-addr.

Start-addr, end-addr, entry-addr and relloc-addr are each numeric values less
than 65536 decimal or 10000 hex. If the value is hexadecimal, it must be
suffixed with a H (i.e. 8000H); otherwise the value is considered decimal.
Start-addr and relloc-addr may be any value 0 - 0FFFFH.

This command operates in two modes, depending on the entry-addr value. If the
entry-addr value = 65535 (0FFFFH), then an exact image of memory is dumped.

DOS LIBRARY COMMANDS2-23

The start-value is stored in the file's first 2 bytes, and the rest of the
file is the memory dump without any interspersed control bytes. This memory
dump file may be displayed or printed via SUPERZAP's DMDB feature, thus
allowing debugging to occur later or on another TRS-80 computer.

If entry-addr is less than 65535 (0FFFFH) or is not specified, then the
specified area of memory is assumed to be machine executable code and is sent
to the file in loader format so that it can be later read back in by the
NEWDOS/80 loader, either for execution or simply for load (see LOAD command).
If entryaddr is not specified, a value of 402DH (causing return to DOS READY)
is used.
CAUTION!! If the user attempts to run or load a file whose start-addr is less
than 5200H, DOS will be clobbered.

relloc-addr specifies where the start-addr to end-addr range of bytes is to
be loaded to by the LOAD command or when the program file is executed. During
write of the object file, the value (relloc-addr) - (start-addr) is added to
every load address placed in the object file. This value is also added to the
entry-addr if entry-addr is within the start-addr to end-addr range. The
actual object code is NOT altered; only the loader control information is.

If filespec1 does not specify an name extension, one is not automatically
supplied as is done in TRSDOS.

DUMP command examples:

1. DUMP,PROGRAM/CMD;1,5200H,9ABCH,54EDH dumps the contents of memory
from and including 5200H to and including 9ABCH to the file PROGRAM/CMD
to exist on drive 1's current diskette. The dump will be in loader format
with entry address equal to 54EDH. Subsequently, the file may be loaded
back into memory via the DOS command:

LOAD,PROGRAM/CMD

or executed via DOS command:

PROGRAM[,parameters]

2. For this next example, assume that a user program is looping for some
reason or has crashed, the personnel to debug the problem are not immedi-
ately available, and it is necessary to continue using the computer for
other purposes. If a spare formatted diskette is available with suffi-
cient free space, and if 'DFG' can activate MINI-DOS or if the computer
is already at DOS READY, then issue the following command:

DUMP,TROUBLE/MEM:2,0,65535,65535

which will dump 65536 bytes of main memory, including ROM, the display,
and all of RAM to file TROUBLE/MEM. The first 2 bytes of the file will
contain 0000H which is the dump start address; the rest of the file is
the memory contents with no interspersed control characters. Once the
dump is completed, the operator should set aside the dump diskette for
later use by the debugging personnel, optionally press reset, and go on
with other tasks. At some later time, debugging personnel can inspect the
problem using SUPERZAP's DMDB feature to display or print the contents of
file TROUBLE/MEM as if it were actually in memory at the current time.

DOS LIBRARY COMMANDS 2-24

The debugger must remember that the DOS areas 4000H - 51FFH were altered
by DOS actions, including DUMP, after the error occurred and before the
dump actually occurred.

2.21. ERROR Display DOS error message.

ERROR,xx

displays the DOS error msg associated with the error number xx where xx is an
integer between 0 and 63. Example:

ERROR,24 will display 'FILE NOT IN DIRECTORY'.

2.22. FORMAT Format a diskette for use with the NEWDOS/80 system.

Diskettes as they are received from the manufacturer cannot be used with
NEWDOS/80. They must first be magnetically divided into tracks with each
track divided into sectors of 256 bytes each. Between 15 and 30 percent of
the diskette's bytes are used as format control information and are not
available to contain user data.

The DOS command FORMAT does this diskette formatting, setting up the tracks
and sectors properly and building the two system files, BOOT/SXS and DIR/SYS,
required on every diskette. When done, the diskette is ready to be used as a
data diskette with NEWDOS/80.

Formatting can also be done as part of the COPY command, formats 5 and 6 (see
section 2.14).

FORMAT,dn2[=tc2],name2,mm/dd/yy,password3[,N][,Y][,NDMW]
[,DDND][,ODN=name1][,KDN][,DDSL=ln1][,DDGA=gc1][,DPDN=dn4]
[,PFST=tn3[,PFTC=tc3]]

FORMAT cannot be executed under MINI-DOS.

In NEWDOS/80 version 2, a track's sectors are read immediately after the
track is formatted and before the disk arm is stepped to the next track.
Then, after all tracks are formatted, if SYSTEM option BM = Y, the entire
diskette is read during the VERIFYING phase. However, if BM=N, this verifying
phase is skipped. The user can decide whether or not the verify-at-track
format is sufficient and set option BM accordingly.

FORMAT does not allow the user to specify tracks to be locked out, and when
an unverifiable sector is encountered, the associated track's lockout byte is
not set to FF to indicate lockout. The lockout table is in the standard
diskette directory only for compatibility with TRSDOS; NEWDOS/80 does not use
it. Remember, NEWDOS/80 does not account for tracks in the directory, it
accounts for lumps, which can span tracks. NEWDOS/80 operates under the
philosophy, however wrong, that if a diskette cannot be fully formatted it
should be discarded.

DOS LIBRARY COMMANDS2-25

FORMAT requires ail parameters be specified in the command. It does not
prompt the user for any.

dn2 is the number of the destination drive to be used during format. Name2 is
the name to be assigned to the diskette unless KDN is specified to retain the
old name, in which case name2 must still be specified but will be ignored.
mm/dd/yy is the date to be assigned to the diskette unless KDD is specified
as the diskette date, in which case mm/dd/yy must still be specified but will
be ignored. Password3 is the password to be assigned to the diskette.
Password3 must conform to the rules for passwords.

Null parameters may be used to invoke default values for diskette name, date
and password, using the name NOTNAMED, the system date and the password
PASSWORD respectively. Any combination of the 3 null values may be used but
where used the null parameters must be delimited by commas, not spaces. See
examples 2, 3 and 4 below.

Since FORMAT and COPY share the same NEWDOS/80 code wherever possible, the
specifications for the optional parameters are nearly the same as those
specified for COPY, formats 5 and 6, the main difference being that only a
format is done rather than both a format and a copy. The reader should read
the sections for COPY, formats 5 and 6 (see section 2.14) to basically
understand FORMAT's optional parameters. Only the differences and two
additional options will be given here.

N is the default if neither it nor any of its mutually exclusive keywords are
specified.

If =tc2 specified, the diskette will be formatted with tc2 number of tracks;
otherwise the diskette will be formatted with the default number of tracks
for that drive (see PDRIVE command). If =tc2 value is greater than the number
of tracks the drive can handle, format will probably hang trying to step to
the non-existent track.

PFST=tn3 and PFTC=tc3 optional parameters are added to allow the formatting
of a range of tracks rather than the entire diskette. If PFST is specified,
=tc2 must not be specified, and if PFTC is specified, PFST must be specified.
PFST means Partial Format Starting Track, and tn3 specifies the first track
to format. If PDRIVE TI flags J or K are applicable for drive dn1, DOS will
add one to tn3. PFTC means Partial Format Track Count, and tc3 specifies the
number of consecutive ascendingly numbered tracks to format. If PFTC is not
specified and PFST is specified, tc3 is assumed equal to 1. After tc3 number
of tracks have been formatted and if SYSTEM option BM = Y, the entire
diskette will be verified. If this full diskette verify is a problem, cancel
the format after verify starts (by pressing up-arrow); remember, each track's
sectors were already verified once immediately after the track was formatted.

FORMAT command examples:

1. FORMAT,0,AAA0,08/01/81,PSWD,Y The diskette to be mounted, at
DOS's request, on drive 0 will be formatted according to the PDRIVE
specifications current for that drive. DOS does not care whether the
format diskette previously contained data or not. The diskette is named
AAA0, dated August 1, 1981, and receives PSWD as its master password.

DOS LIBRARY COMMANDS 2-26

2. FORMAT,0,,,,Y This example is identical to the previous example
except that default values are used for the diskette name, date and
password. The diskette is named NOTNAMED, is dated with the current
system date and is assigned PASSWORD as its password.

3. FORMAT,1,XXX,,PSWD,N,NDMW,DPDN=4,DDSL=40,DDGA=6 The diskette al-
ready mounted on drive 1 must not contain recognizable data. It is
formatted according to the system diskette's PDRIVE drive 4
specifications (and not according to the existing drive 1
specifications). It is assigned name XXX and password PSWD; its date is
taken from the current system date. The directory starts at the beginning
of lump 40 and consists of 6 granules (allows for a maximum of 222
files). Due to NDMW, DOS does not ask for the mount of the format
diskette nor does it allow error retry.

4. FORMAT,1,,,,Y,PFST=22,PFTC=2 Suppose a power failure destroyed
the format of tracks 22 and 23 on a diskette. Using SUPERZAP, you have
verified that indeed SECTOR NOT FOUND error occurs on at least one sector
on each of those tracks and, using the CDS or SCOPY functions of
SUPERZAP, you have saved in free sectors elsewhere, either on this
diskette or another, the readable sectors of those two tracks. Executing
this FORMAT command will cause only those two tracks to be reformatted;
the rest of the information on the diskette is not affected. When done,
you can now move back the saved sectors and recreate the ones that were
not savable.

2.23. FORMS (Model III only) Set printer parameters.

FORMS[,WIDTH=xxx][,LINES=yyy]

The FORMS command optionally changes some printer parameters and always lists
out the printer parameters.

WIDTH=xxx specifies the number of characters per line where xxx must be a
value between 9 and 255. If WIDTH is not specified, the number of characters
per line is not changed.

LINES=xxx specifies the number of lines per page, and must be a value
between 1 and 254, where 254 indicates no limit on the lines per page. If
LINES is not specified, the lines per page value is not changed.

FORMS command examples:

1. FORMS,WIDTH=80,LINES=60 character per line is set to 80 and lines
per page to 60.

2. FORMS,WIDTH=255,LINES=254 Unlimited characters per line and lines
per page.

3. FORMS Displays current values for characters
per line and lines per page.

DOS LIBRARY COMMANDS2-27

2.24. FREE Display number of free granules and free FDFs for each
diskette currently mounted.

FREE[,P]

For each drive with a diskette mounted, FREE will display the drive number,
the diskette name, the diskette date, the number of tracks for the diskette,
the number of free FDEs and the number of free granules.

If P is specified, the information will be sent to the printer instead of the
display.

FREE command examples:

1. FREE For each diskette currently mount the number of free
granules and free directory entries is listed on the display.

2. FREE,P Same as above except the listing is sent to the printer.

2.25. HIMEM Set DOS's high memory value.

HIMEM[,addr1]

DOS maintains a high memory address in the two bytes at Model I location
4049H (Model III location 4411H). This high memory value is used by COPY,
BASIC, EDTASM, DISASSEM and LMOFFSET as the upper limit of the memory they
can use. User programs should also use this 2 byte HIMEM value as their upper
limits. Caution! The loader does not use HIMEM as its upper limit during
program load.

If no parameters are specified, the HIMEM command displays in hexadecimal the
current high memory value.

If addr1 is specified, the DOS high memory address is set to addr1 which must
be an integer between 28672 and 65535 decimal (7000H - 0FFFFH hexadecimal).

HIMEM command examples:

1. HIMEM Displays the current DOS high memory address.

2. HIMEM,49000 Set DOS's high memory value to 49000 (0BF68H).

2.26. JKL Send the current contents of the display to the printer.

JKL has no parameters. This command uses the same routine used by the 'JKL'
triple key function (see section 4.5). JKL simply dumps the display contents
to the printer. If system option AK=Y, hex codes >= 80H (which includes the
graphics) will be transmitted unchanged; otherwise a period will be

DOS LIBRARY COMMANDS 2-28

substituted for them. Hex codes < 20H will be displayed as periods. Pressing
BREAK during JKL print will terminate the JKL function.

JKL's main use will he either via CMD"JKL" from BASIC or via DOS-CALL from a
user program.

2.27. KILL delete a file.

This command deletes a file from a diskette. The file is no longer accessible
by normal methods and is no longer known to DOS.

KILL,filespec1

The file filespec1 is deleted from the current diskette mounted on the speci-
fied drive. If a drive number was not specified, then all mounted diskettes
are searched, starting with the diskette on drive 0, and the delete is done
on the 1st file found having the specified name and name extension.

KILL action is as follows:

1. If the file was allocated file space on the diskette, the space is
released, and becomes available for subsequent assignment to other files.
The file's data, if any, on the diskette is not altered by the KILL. This
data, though no longer accessible, is not written over until the assoc-
iated file space is reassigned to another file and those sectors actually
written to.

2. The file's FPDE and any owned FXDEs are freed by zeroing bit 4 of the
1st byte of each and by zeroing the associated HIT sector byte for each.
Except for that bit 4, none of the associated FPDE and FXDEs are altered
by normal DOS operation until that FDE is reassigned to another file by
DOS.

If the user has inadvertently killed a file that shouldn't have been, since
neither the associated FDE's or the diskette space used by the file is
changed by DOS until DOS has a need to, it is possible to reconstruct the
FPDE and FXDEs and reallocate the space. To do this, you must be extremely
familiar with the workings of the directories; do not call Apparat as this is
a major undertaking and not something that can be quickly taught. If you
don't know how to do it, forget it!

If you have more than a few files to delete at one time from a diskette, use
the PURGE command.

KILL command examples:

1. KILL XXX/BAS:1 The file XXX/BAS on the diskette mounted on drive 1
is killed.

2. KILL YYY Starting with drive 0, mounted diskettes are searched
until file YYY is found on one of them. That file is then killed. If
other mounted diskettes also contain a YYY file, the other YYY files are
not killed.

DOS LIBRARY COMMANDS2-29

2.28. LC Set keyboard a - z toggle switch to the specified state.

LC[,yn]

LC or LC,Y sets the keyboard lower case a - z toggle switch to accept a - z
without change.

LC,N sets the keyboard lower case a - z toggle switch to change lower
case a - z to upper case A - Z.

For the Model I, the LC command has no effect unless the lower case driver is
active (see LCDVR command).

2.29. LCDVR (Model I only) Lower case driver.

LCDVR[,x[,s]]

In NEWDOS/80 version 1, the lower case driver that processed keyboard lower
case alphabetics and which sent lower case displayed characters to the
display was a separate program that executed from high memory. In version 2,
the lower case driver is an integral part of the Model I NEWDOS/80.

If x = Y, the lower case driver routine is activated, and if x = N, the
routine is deactivated. When the lower case driver routine is active:

1. Keyboard input a - z characters are processed according to the a - z
toggle switch.

2. ASCII codes 96 - 127 (60H - 7FH) are displayed as their proper charac-
ters and are not changed to 64 - 95 (40H - 5FH) by the ROM display
routine.

The second parameter is meaningful only when x = Y, performs the same as the
first parameter of LC command, initially setting the a - z toggle switch to
accept a - z (if s = Y) or convert a - z to A - Z (if s = N).

Once the lower case driver is activated, pressing shift 0 will switch the
driver back and forth between accepting lower case letters and converting
lower case letters to upper case. Further, DOS command LC may be used to
explicitly set one or the other of those states.

To use the lower case driver, NEWDOS/80's keyboard and display intercept
routines must be enabled. Other routines (excluding ROUTE) that disable these
NEWDOS/80 functions will also disable the lower case driver (one example is
using the circular buffer in the spooler).

If no parameters are specified, the command is assumed to be LCDVR,Y,N.

This lower case driver operates somewhat differently than the LCDVR program
supplied with Version 1. In Version 1, if lower case a - z was being
converted to upper case A - Z, then upper case A - Z was also being converted
to lower case a - z. Version 2 does not convert upper case A - Z to lower
case a - z; instead a true capital letter lock is done:

DOS LIBRARY COMMANDS 2-30

LCDVR command examples:

1. LCDVR The lower case driver routine is activated and the
lower case switch is set to convert lower case a - z to upper case A - Z.

2. LCDVR,Y,Y The lower case driver routine is activated, and the
lower case switch is set to accept lower case a - z without modification.

3. LCDVR,N The lower case driver routine is deactivated.

2.30. LIB Display NEWDOS/80 library commands.

LIB requires no parameters. It displays the library commands of NEWDOS/80.
Commands FORMAT, COPY and APPEND execute in memory 5200H and up, and, along
with CHAIN, cannot be executed in MINI-DOS. The other commands execute from
the DOS overlay area, 4D00H-51FFH, and, except for CHAIN, can be executed
under MINI-DOS.

2.31. LIST List a text file on the display.

LIST,filespec1[,start-line[,line-count]]

This command sends the contents of file filespec1 to the display. Though file
filespec1 need not be a text file, if it is not, the resulting display will
not be very meaningful. Examples of text files are BASIC programs saved with
the A option, BASIC files written using PRINT, assembler, FORTRAN and COBOL
source text files, SCRIPSIT files saved with the A option and Electric Pencil
files. To list a non-text file, use SUPERZAP.

No check is made on the character representations except to modulate
characters whose hexadecimal values are between 80H and FFH into the range
OOH to 7FH and to replace with a period all characters whose hexadecimal
value is less than 20H or greater than the high ASCII character value
specified by the SYSTEM option AX.

If start-line (decimal value 1 - 65535) is specified, listing will start with
that line where a line is considered to end with the ENTER or EOL character
0DH.

If line-count is specified, then the number of lines displayed is limited to
either line-count or the number of lines in the file from the start point,
whichever is less. If line-count is specified, start-line must also be speci-
fied.

Pressing right arrow will cause a display pause when hex char 0DH is encount-
ered or after 256 bytes have been displayed, whichever comes first. Pressing
ENTER will continue the displaying. Pressing up-arrow will terminate LIST.

Aside from just listing a file, LIST is useful where text files maintain a
date/time stamp near the beginning. If the user has multiple copies of a text

DOS LIBRARY COMMANDS2-31

file, it may be necessary to look at the file beginning to determine which
copy is the most recent.

LIST command examples:

1. LIST,BASEPROG/BAS displays the entire contents of file BASEPROG/BAS.

2. LIST,XXX,1,6 displays the first 6 lines of file XXX.

3. LIST,YYY:1,200 displays the contents of file YYY from the 200th line
to the end of the file.

2.32. LOAD Load a Z-80 machine language file into RAM.

LOAD,filespec1

This command loads the Z-80 machine language file filespec1 into RAM, and
stores its entry address into the two bytes at 4403H (17411 decimal). The
file must be in proper loader format, such as created by DUMP or EDTASM. The
load proceeds using control data from the file. If the file loads over any
part of the resident DOS (4000H - 4CFFH) or its overlay area (4D00H - 51FFH),
serious and maybe file damaging trouble will occur; with luck, the system
will hang.

LOAD is used when a program or data is to be loaded into RAM for later use by
other programs. An example is loading programs, which will be invoked via
BASIC's USR function. Remember, the entry address is stored in the two bytes
at 4403H (17411 decimal); this is not done in TRSDOS.

LOAD command examples:

1. LOAD,OVERLAY/OBJ:1 The object code module OVERLAY/OBJ is loaded
into main memory from the diskette mounted on drive 1. The load control
information within file OVERLAY/OBJ determines what is to be loaded and
where in main memory it is to be loaded.

2. Suppose that BASIC does not use all of high memory and that a BASIC
program wishes to load the program USR3PGM/OBJ into high memory and later
execute it as the BASIC USR3 function. Executing the BASIC statements:

CMD"LOAD,USR3PGM/OBJ"
DEFUSR3 = (PEEK(17411) + 256 * PEEK(17412) - 65536

will set this up.

2.33. MDBORT Terminate MINI-DOS and go to DOS READY.

MDBORT has no parameters. It should only be executed when NEWDOS/80 is in
MINI-DOS state. MINI-DOS state is terminated, the pre-MINI-DOS state purged
and the system goes to DOS READY.

DOS LIBRARY COMMANDS 2-32

The purpose of MDBORT is to provide for the situation where the operator does
not want to continue the main program which was interrupted by the
simultaneous depression of the D, F and G keys (which invoked MINI-DOS).

2.34. MDCOPY Copy a file while under MINI-DOS.

MDCOPY,filespec1(,TO],filespec2

The regular COPY command cannot be executed under MINI-DOS. MDCOPY gives the
user a restricted and quite slow form of file copy, which does execute under
MINI-DOS.

MDCOPY copies the contents of file filespec1 to the new or existing file
filespec2. File filespec1 is not altered, and the previous contents of file
filespec2, if any, are lost. Filespec2 may not be foreshortened as is allowed
for COPY.

MDCOPY command example:

MDCOPY XXX/DAT:0 YYY/DAT:1

The contents of file XXX/DAT on the diskette currently mounted on drive
is copied as file YYY/DAT onto the diskette currently mounted on drive 1.

2.35. MDRET Exit from MINI-DOS and return to main program.

MDRET has no parameters. The system exits MINI-DOS state and continues the
main program at the point where it was interrupted by the invocation of MINK
DOS (simultaneous depression of the D, F and G keys). If the cursor was dis-
played before 'DFG', it will be redisplayed. If the 'DFG' interruption
occurred while the key input buffer contained a partial input record, that
partial record is still there even though it is no longer displayed. The user
should continue keying exactly where he/she left off.

If the invocation of MINI-DOS occurred during the timer interrupt rather than
the key intercept, one or more of D, F or G may appear as spurious input keys
after MDRET is executed. The user should backspace over them. The user and
DOS have no control over these spurious input chars; therefore DFG should not
be pressed when a program is in text overwrite mode, such as SCRIPSIT or
Electric Pencil; instead go into command mode where the spurious characters
can be backspaced over without damage to the text.

DOS LIBRARY COMMANDS2-33

2.36. PAUSE Display message and pause waiting on ENTER.

PAUSE,msg

The message msg is not redisplayed if the PAUSE command itself was displayed.
If the PAUSE command was not displayed, as occurs if it is executed under
DOS-CALL, the message msg is displayed. In any event, the message PRESS
"ENTER" WHEN READY TO CONTINUE is displayed on the next line. DOS then waits
for the user to press the ENTER key. The PAUSE command is one of the four
ways of causing a pause in chaining, and can also be used when a series of
commands in main memory are being executed by a series of DOS-CALLS.

PAUSE command example:

PAUSE,MOUNT DISKETTE LABELED "PRIMARY" ON DRIVE 1.

This message will appear on the display and will be followed on the next
, display line by the message PRESS "ENTER" WHEN READY TO CONTINUE. DOS
waits for the user to press ENTER which presumably he/she will do after
the proper diskette has been mounted in drive 1. DOS doesn't check to see
if the user has done what was requested; all DOS does is wait for the
ENTER.

2.37. PDRIVE Assign default attributes to a physical drive.

PDRIVE[,password1:]dn1,[dn2[=dn3]][,TI=typel][,TD=type2][,TC=tc1]
 [,SPT=scq][,TSR=rc1][,GPL=gc2][,DDSL=ln1][,DDGA=gc1][,A]

NEWDOS/80 has limited capabilities for operating with a mixture of 5 inch
disk drives and to a lesser extent 8 inch disk drives. PDRIVE is the command
method used to inform NEWDOS/80 of a particular physical drive's
characteristics.

Each PDRIVE command lists the resulting specifications for 10 drives even
though the actual number of drives eligible for I/O is limited by the SYSTEM
option AL and in no case exceeds 4. Those drives within the range of SYSTEM
option AL are flagged on the PDRIVE display by an asterisk suffixed to the
drive number. The specifications for the 10 drives is maintained on the
system diskette mounted on drive dn1. For efficiency reasons, DOS normally
uses drive specifications from a table it has in main memory. This main
memory PDRIVE table contains specifications for 1 to 4 drives, depending upon
the SYSTEM option AL value, and is automatically reloaded from the drive 0
diskette at power on and reset if and only if the specifications for all 10
drives are error free (otherwise the reset hangs). This table is also
immediately reloaded by a PDRIVE command specifying the A parameter (see
below).

Drive dn1 is the drive containing the system diskette whose control
information (in the 3rd sector) is being updated. Drive dn2 indicates which
physical drive of the 10 represented in the control information sector on
drive dn1 is having its control information updated.

DOS LIBRARY COMMANDS 2-34

For example, if the PDRIVE command is PDRIVE,1,4,TC=80 then the diskette
on drive 1 is read to obtain the PDRIVE control information and is
updated to contain the new drive 4 specification. Drive 1's PDRIVE
control information contains the specifications for ten drives, dn2
values 0 through 9, and it is the fifth drive's information (for dn2 = 4)
that is changed. The specifications for the other nine drives are not
changed.

If passwords are enabled, then password1 must be specified and be the master
password for the diskette on drive dn1. Otherwise, password1 may be left out
of the command.

Control data is changed only for the parameters specified; parameters not
specified are not changed. If any errors are displayed, the dn1 diskette must
NOT be used as the system diskette during a reset/power-on until the errors
are corrected.

PDRIVE,dn1 will list the 10 PDRIVE specifications contained in the control
data on the system diskette mounted on drive dn1.

dn2 must be specified if any other optional parameters except A are
specified. If dn2 is specified, it must be the 1st parameter following dn1.

dn2=dn3 causes drive dn2 to assume the PDRIVE specifications of drive dn3.
This is done before any other optional parameters are interpreted.

TI=type1 specifies the type of disk drive interface. type1 consists of one
or more alphabetic letter flags chosen from the list below. For the Model I,
one and only one of flags A, B, C or E must be chosen. For the Model III, one
and only one of flags A or D must be chosen. The other flags are optional
depending upon the interface. Certain flags are inter-drive mutually
exclusive meaning that for a given drive dn1, if one dn2 drive specifies a
flag that is interdrive mutually exclusive with another flag, then another
dn2 drive may not specify the excluded flag. For now, flags B, C and E are
interdrive mutually exclusive for the Model I.

Flag A means the standard disk interface is to be used for diskette I/O
for this drive. For the Model I this interface supports drive types A and
C. For the Model III this interface supports drive types A, C, E and G.

Flag B (Model I only) means that an OMIKRON mapper type interface is
installed and is to be used for I/O for this drive. This interface
supports drive types A, B, C and D.

Flag C (Model I only) means that a PERCOM doubler type interface is
installed and is to be used for I/O for this drive. This interface
supports drive types A, C, E and G.

Flag D (Model III only) means that an Apparat disk controller type inter-
face is installed and is to be used for I/O for this drive. This inter-
face supports drive types A through H (drive types F and H require a
Model III speed up modification).

Flag E (Model I only) means that an LNW type interface is installed and
is to be used for I/O for this drive. This interface supports drive types
A through H.

DOS LIBRARY COMMANDS2-35

Flag H means head settle delay is to be done whenever DOS changes from
another drive to this drive. For Model I and Model III 5 inch drives, the
heads for all 5 inch drives are loaded when the motors go on, and this
extra time delay is NOT needed. Flag H is needed for 8" drives.

Flag I means the lowest numbered sector on each track is sector 1. This
is the normal state for Model III TRSDOS diskettes. If flag I is not
specified, the lowest numbered sector on each track is assumed to be 0,
which is the state for the Model I and for NEWDOS/80 on the Model III.

Flag J means the track numbers start from 1. If flag J is not specified,
track numbers are assumed to start from 0, which is the standard state
for the Model I and the Model III.

Flag K means track 0 is formatted (or is to be formatted) in density
opposite to that of the diskette's other tracks. This makes track 0
unavailable for normal I/O. Flag J is implicitly set by flag K. The
purpose of formatting track 0 in opposite density is to allow a double
density (Model I) or single density (Model III) SYSTEM diskette to be
booted up. The Model I ROM must be able to read the boot sector in single
density, and the Model III ROM must be able to read the boot sector in
double density. Setting flag K causes FORMAT and COPY with format to
format track 0 in the opposite density and to store the required boot
sector onto that track for the ROMs to use. With flag K set, normal DOS
I/O to track actually goes to track 1, 1 to 2, etc. Flag K must be
specified for a drive that is to read a double density diskette created
by the PERCOM type doubler interface under NEWDOS/80 version 1 or any
other DOS except NEWDOS/80 version 2 or higher. For NEWDOS/80 version 2
Model I, double density data diskettes do not have to reserve track 0 for
opposite density if those diskettes will never be used on a drive 0 whose
PDRIVE specifies double density. Flag K must NOT be specified for
standard Model III diskettes, unless for some reason the user wants a
single density system diskette on the Model III or is making a double
density diskette to be read on the Model I that does not have NEWDOS/80
version 2. When flag K is specified, then TC must specify one less track
than would be specified if flag were not specified. Further, due to the
differing sequence in which consecutive sectors are stored on the
diskettes, double sided, double density diskettes created under the
patched NEWDOS/80 version 1 are not readable under NEWDOS/80 version 2.
To transfer files on those diskettes to Version 2, they must first be
moved (using Version 1) to either single sided (either density) or double
sided, single density diskettes.

Flag L means two step pulses between tracks. This allows a 35 or 40 track
diskette to be read on an 80 track drive. Writing can also be done in
this manner, but the 35 or 40 track drives have trouble reading some of
the sectors so writing is not recommended.

Flag M means the diskettes are standard TRSDOS Model III diskettes. Flag
M implies flag I. The COPY DOS command is the only function within
NEWDOS/80 that will honor or even notice a TRSDOS Model III diskette as
distinct from a NEWDOS/80 diskette, and even this will not occur unless
flag M is set.

Flags F through G and N through Z are reserved for future definition.

DOS LIBRARY COMMANDS 2-36

TD is the Type of Drive specification. The definitions are:

1. TD=A 5 inch, single density, single sided drive.
2. TD=B 8 inch, single density, single sided drive.
3. TD=C 5 inch, single density, double sided drive.
4. TD=D 8 inch, single density, double sided drive.
5. TD=E 5 inch, double density, single sided drive.
6. TD=F 8 inch, double density, single sided drive.
7. TD=G 5 inch, double density, double sided drive.
8. TD=H 8 inch, double density, double sided drive.

If a CPU speed up module is installed in the computer that reverts to
normal CPU during disk I/O, this reversion must not slow the CPU speed to
less than the original rated CPU speed for that model. NEWDOS/80's disk
I/O loops, especially for the Model 1 for drive types B, D, E and G, can-
not tolerate any reduced CPU speed below the original speed. In limited
testing and with SYSTEM option BJ properly set, NEWDOS/80 Version 2 has
run disk I/O successfully without the need to turn off the CPU speed;
however, Apparat does not guarantee such performance.

TD=F and TD=H require a CPU speed up module installed in the computer
which at least doubles the CPU's speed during disk I/O.

For drive types C, D, G and H, the current NEWDOS/80 interfaces (TI flags
A, B, C, D or E) consider a double sided diskette as a single volume
(i.e., only one directory) with each track having its lower numbered sec-
tors on the first side and the higher numbered sectors on the second
side. Pin 32 is used to select the 2nd side (special cables required),
and any drive on the cable that shunts pin 32 over as a drive 3 select
must have that shunt wire cut to prevent that drive from being selected
when another drive's 2nd side is being selected. Double sided, double
density 40 and 80 track drives have been used on the Models I and III
under NEWDOS/80 Version 2.

One of the reasons Apparat never supported double density in Version 1
was that most drives did not work reliably in double density. Whether
this was the fault of the drives, the diskettes, the data separator or
the controller was never really ascertained. Over the last nine months,
things have improved somewhat, but double density is still not as
reliable as single density and probably never will be. Apparat was
informed that the two byte pattern 6DB6 is a much better "worst case"
double density pattern than the E5's used in single density, and indeed
the 6DB6 pattern is such. In fact, it is such a good "worst case"
condition that a good percentage of certified double sided, double
density diskettes will fail format. To many users, this will prove
intolerable and they will want to apply the ZAP that goes back to the E5
pattern, if it is not already applied. However, using the E5 pattern in
double density means that the user will increase the probability that a
diskette that formats successfully will at some future time fail.

TC=tc1 specifies the number of tracks on the disk, excluding track 0 if TI
flag K is set. If flag K is not set, TC=35 for a 35 track drive, TC=40 for a
40 track, etc. If flag K is set, then TC=34 for a 35 track drive, TC=39 for a
40 track, etc.

DOS LIBRARY COMMANDS2-37

SPT=sc1 specifies the number o£ sectors per track. For double sided, single
volume diskettes (TD = C, D, G or H), sc1 must be twice what it would be if
single sided diskettes. sc1 may be any value from 1 to the maximum number of
256 bytes sectors the track can physically hold. For each of the above speci-
fied drive types, the maximum number of sectors per track is: A=10, B=17,
C=20, D=34, E=18, F=26, G=36 and H=52.

TSR=rc1 specifies the track stepping pulse time code the controller uses for
this drive. rc1 is a value from 0 to 3 and becomes part of the SEEK, STEP and
RESTORE commands sent to the controller. For the Model I and III standard
controllers, TSR=0 gives 5 ms stepping, TSR=1 gives 10ms stepping, TSR=2
gives 20ms stepping and TSR=3 gives 40ms stepping. TSR=3 was the original
standard for the Model I, with some users using TSR=2 or TSR=1 for certain
drives. The Model III appears to use TSR=0 as standard. If you are having
drive trouble, the safest setting is TSR=3 (fastest stepping rate for the
Model I is 12ms).

GPL=gc2 specifies the number of granules per lump where gc2 is a value
between 2 and 8. In TRSDOS for the Model I and III and the older versions of
NEWDOS, disk space allocation was done via granules (5 sectors per granule on
the Model I and 3 per granule on the Model III) and tracks (2 granules per
track on the Model 1 and 6 granules per track on the Model III). In NEWDOS/80
version 2, for both the Models I and III, there are still 5 sectors per
granule, and 2 to 8 granules per lump (not track). Wherever a track number
appeared in the directory (in the GAT sector and in the FDE two byte extent
elements), it has been replaced with a lump number. Doing so allows a granule
to start in one track and end in another and allows double density and 8 inch
diskettes to maximize the number of sectors per track while keeping the same
directory format. GPL=2 maintains compatibility with the old 35 track single
density diskettes, as the directories will be exactly the same and
transferable back and forth between the Model I TRSDOS and NEWDOS versions
before NEWDOS/80 version 2. However, by going to GPL=8 the directory can now
accommodate 192 x 8 x 5 = 7680 sectors or 1,966,000 bytes.

DDSL=ln1 is the logical equivalent of and replacement for the DDST parameter
used in NEWDOS/80 version 1. IS specifies the number of the lump at whose
first sector is to contain the directory's 1st sector. This value is stored
in the boot sector 3rd byte during diskette format and is used when necessary
to find the directory. It is also used during diskette format to determine
where to put the directory. In the older systems, the 3rd byte of the boot
sector contained the track number in whose 1st sector the directory started.
Since tracks are not used in space allocation and control in NEWDOS/80
version 2, the 3rd byte of the boot now contains the number of the lump in
whose 1st sector the directory starts. To determine the relative sector
number of the directory's 1st sector (the GAT sector), access the boot
sector's 3rd byte and multiply that value by 5 times GPL. DDSL=17 maintains
compatibility with the standard 35 track, single sided, single density
diskettes. DDSL should be set to the value used for the DDST parameter in
NEWDOS/80 version 1.

DDGA=gcl specifies the default number of granules to be allocated to the
directory when it is created during format, where gc1 is a value between 2
and 6. DDGA=2 should be specified for standard 35 track, single density,
single sided compatibility. gc1 > 2 allows the user to have more than 62
files on a data diskette with the maximum being 222 files.

DOS LIBRARY COMMANDS 2-38

A specifies that if and only if no errors were found during the checking of
the specifications for all the drives, then the specifications for SYSTEM
option AL number of drives is loaded into the main memory PDRIVE table to
immediately become the controlling data for those drives; this eliminates the
need for a reset. If parameter A is specified, dn1 must = 0.

PDRIVE is executable under MINI-DOS.

PDRIVE command examples:

1. PDRIVE,dn1,dn2,TI=A,TD=A,TC=35,SPT=10,TSR=3,GPL=2,DDSL=17,DDGA=2
is the PDRIVE specification for a standard 5 inch, 35 track, single den-
sity, single sided diskette used for communication in the Model I world.
This specification can also be used on the Model III to read the diskette
providing the directory address marks are correct (see SYSTEM option AN).

2. PDRIVE,dn1,dn2,TI=A,TD=E,TC=40,SPT=18,TSR=3,GPL=2,DDSL=17,DDGA=2
is the Model III specification (Model I, use TI=C) for a standard 5 inch,
40 track, double density, single sided diskette used for communication
through out the NEWDOS/80 Model III world. Using this specification, this
diskette can also be read on the Model I in a drive other than 0 if a
double density modification is installed in the expansion interface.

3. PDRIVE,dn1,dn2,TI=AM,TD=E,TC=40,SPT=18,TSR=3,GPL=6,DDSL=17,DDGA=2
is the Model III specification (Model 1, use TI=CM or EM) for reading or
writing to a TRSDOS Model III standard 5 inch, double density, single
sided diskette. A 40 track, double density, single sided 5 inch diskette
is the only type TRSDOS Model III diskette that NEWDOS/80 can handle.
GPL=6 is mandatory. Since a TRSDOS Model III diskette cannot be formatted
by NEWDOS/80, DDSL and DDGA are meaningless. In NEWDOS/80 (double density
mod must be installed for Model I), only the COPY DOS command can be used
with TRSDOS Model III diskettes excepting that diskette sectors can be
read/written via SUPERZAP by using the DD, DM, DTS, VDS, CDS, CDD, etc.
functions that do not refer to files (i.e., don't use DFS).

4. PDRIVE,dn1,dn2,TI=A,TD=C,TC=80,SPT=20,TSR=2,GPL=8,DDSL=20,DDGA=6
is the specification for a 5 inch, 80 track, single density, double
sided, single volume diskette with 20ms stepping, 8 granules per lump,
with the directory positioned at the diskette halfway point and maximum
size directory. For the Model III, the single density drive 0 restriction
applies.

5. PDRIVE,dnq,dn2,TI=A,TD=G,TC=80,SPT=36,TSR=2,GPL=8,DDSL=35,DDGA=6
is the Model III specification (Model I, use TI=C or E) for a 5 inch, 80
track, double density, double sided, single volume diskette to use 20ms
stepping, 8 granules per lump, maximum size directory positioned at the
diskette halfway point. For the Model I, the double density drive
restriction applies.

6. PDRIVE,dn1,dn2,TI=CK,TD=E,TC=39,SPT=18,TSR=3,GPL=2,DDSL=17,DDGA=2
is the Model I specification (Model III, use TI=AK) for 5 inch, 40 track,
double density, single sided diskette that has track 0 formatted in
single density, hence only 39 tracks available for regular use. This
specification will handle double density diskettes formatted by TRSDOS
and NEWDOS/80 version 1 running under the PERCOM doubler. This
specification will also be used when generating a double density diskette

DOS LIBRARY COMMANDS2-39

to be the system diskette in drive 0 for the Model I. For LNW Model I
interface, use TI=EK.

7. PDRIVE,dn1,dn2,TI=CK,TD=G,TC=79,SPT=36,TSR=3;GFL=8,DDSL=35,DDGA=6
is the Model I specification (Model III, use TI=AK) for a 5 inch, 80
track, double density, double sided, single volume diskette that has
track formatted single density. For the LNW Model I interface, use TI=EK.

Warning!!! Double sided, double density diskettes used on the patched
NEWDOS/80, version 1 are not usable on Version 2 (see TI flag K
discussion).

8. PDRIVE,dn1,dn2,TI=AL,TD=A,TC=35,SPT=10,TSR=3,GPL=2,DDSL=17,DDGA=2
is the specification for a 5 inch, 35 track, single sided, single density
diskette that is to be read on an 80 track drive. The 80 track drives
step only half as far as the 35 and 40s for each data track; setting flag
L causes 2 steps to be taken for each data track stepped.

9. PDRIVE,dn1,dn2,TI=BH,TD=B,TC=77,SPT=17,TSR=3,GPL=3,DDSL=17,DDGA=6
is the Model I specification for an 8 inch, 77 track, single sided,
single density diskette. Note, NEWDOS/80 version 1 used SPT=15 and an
implied GPL=3, and to read those diskettes, SPT=15 and GPL=3 must be
used. It is recommended that a COPY be done to convert those diskettes to
SPT=17, thus gaining 12% more diskette space. Flag H causes head load
settle delay to be used, required for most 8 inch drives.

10. PDRIVE,dn1,dn2,TI=BH,TD=D,TC=77,SPT=34,TSR=3,GPL=8,DDSL=l7,DDGA=6
is the Model I specification for an 8 inch, 77 track, single density,
double sided, single volume diskette with head load settle delay
required.

11. PDRIVE,dn1,dn2=dn3 is the specification to cause drive dn2 to
receive as its specifications those of drive dn3.

12. PDRIVE,dn1,dn2=dn3,TC=40,TSR=2 is the specification to cause drive
dn2 to receive as its specifications those of drive dn3 and then to apply
new values for TC and TSR.

13. PDRIVE,0,A causes the PDRIVE data for SYSTEM option AL number of
drives to be loaded into the main memory PDRIVE table if and only if the
full display of the specifications shows no error.

14. PDRIVE,0,dn2=dn3,A changes drive 0's specifications for dn2 to be
those of dn3, and then performs as in the above example.

2.38. PRINT List a text file on the printer.

PRINT,filespec1[,start-line[,line-count]]

PRINT executes identical to LIST, excepting the listing goes to the printer
instead of the display. Refer to DOS command LIST for specifications and
examples.

DOS LIBRARY COMMANDS 2-40

2.39. PROT Alter some diskette control data.

PROT,[password1:]dn1[,NAME=name1][,DATE=mm/dd/yy][,RUF]
 [,PW=password2][,LOCK][,UNLOCK]

At least one optional parameter must be specified. The target diskette is
mounted on drive dn1. If passwords are enabled, password1 must be specified
and must equal the diskette's master password.

NAME=name1 The diskette is given the name name1.

DATE=mm/dd/yy The diskette is given the date mm/dd/yy.

RUF Reset Updated Flags. This option turns off the updated
flags for all files on the diskette. If a user backs up only those files
having the updated flag on (see UPD option of COPY) off, executing PROT with
the RUF option after the copying is completed turns off the updated flags so
the files will not be eligible for a subsequent backup until the file is
subsequently updated. Simply writing or rewriting one sector of the file,
whether or not anything was actually changed, causes DOS to turn on a file's
updated flag.

PW=password2 Password2 must conform to the rules for passwords, with
null set as all blanks. The diskette receives password2 as its password.

LOCK All files of the diskette, except system and invisible
files, are given the diskette master password as both their access and update
passwords. If password2 specified, it is used. This feature used to be the
only way a user, in a password enabled system, could get to a file whose
password(s) he/she had forgotten, if the user did know the diskette master
password. It has the unfortunate drawback in that it changes the passwords
for all, except system and invisible, files on the diskette; thus causing the
user to reassign passwords to all the others as well as to the file whose
passwords he/she forgot. An easier way is available if the user knows the
password of at least one NEWDOS/80 system diskette or better still, has a
NEWDOS/80 system diskette with passwords disabled (system option AA = N).
With passwords disabled, the user can use ATTRIB to, directly reassign new
passwords to the file whose passwords are forgotten without having to affect
other user files on the diskette. Then passwords can be re-enabled.

UNLOCK The access and update passwords of all of the diskette's
files, except system and invisible files, are set to all blanks, meaning no
passwords for those files.

PROT command examples:

1. PROT,2,RUF The updated flag is cleared for each file on the
diskette currently mounted on drive 2.

2. PROT,OLDPSWD:1,NAME=AAB3,DATE=07/15/81,PW=NEWPSWD
In this example, passwords are enabled; therefore the diskette's master
password OLDPSWD was required. The diskette control information for the
diskette mounted on drive 1 is changed such that its name is AAB3, its
date is July 15, 1981 and its new master password is NEWPSWD.

DOS LIBRARY COMMANDS2-41

2.40. PURGE Selectively kill files from a diskette.

PURGE,[password1:]dn1[,/ext][,USR]

The diskette mounted on drive dn1 is used for this command. If passwords are
enabled" password1 must be specified and must be equal to the diskette's
master password.

For each file, except BOOT/SYS and DIR/SYS, on the diskette, DOS asks the
operator if the file is to be killed. If the file is to be killed, respond Y;
the file will be immediately killed, as if a KILL command has been issued. If
the file is NOT to be killed, respond N. Respond Q if you wish to quit the
PURGE function.

/ext If this option is specified, the purge queries are limited to only
those files having name extension ext where ext is 0 to 3 characters.

USR If this option is specified, system and invisible files are not
included in the PURGE function.

PURGE command examples:

1. PURGE,1 For each file, except BOOT/SYS and DIR/SYS, on the
diskette currently mounted on drive 1, DOS asks if the file is to be
killed. If the response is Y, the file is killed.

2. PURGE,0,/DAT For each file on the diskette currently mounted on
drive 0 that has name extension DAT, DOS asks if the file is to be killed
and does so if the response is Y.

3. PURGE,0,USR For each non-system, non-invisible file on the
diskette currently mounted on drive 0, DOS asks if the file is to be
killed and does so if the response is Y.

2.41. R Repeat the previous DOS command.

This command causes the re-execution of the previous DOS command, excluding
the command R. Example:

DIR 1 followed by:
R

will execute the same as if the two DOS commands had been:

DIR 1
DIR 1

The R command can not be executed from BASIC via CMD"doscmd" as that function
requires that the command, excluding ENTER, must be 2 or more characters
long.

The R command has no parameters and must be keyed exactly as R followed by
ENTER. If more than 2 characters are keyed into the buffer and then

DOS LIBRARY COMMANDS 2-42

backspaced so that DOS only sees the R and the ENTER, the previous DOS
command that was residing in the command buffer will still have been altered
and the R command will either fail or in rare circumstances, execute
something different than what the operator expected.

If the previous DOS command is no longer intact in the DOS command buffer,
the results of the R command are unpredictable.

If SYSTEM option BE = N, the R command does not execute the previous DOS com-
mand but instead simply returns to DOS READY.

2.42. RENAME Rename a file.

RENAME,filespec1[,TO],filespec2

The file filespec1 is renamed to filespec2, where filespec2 consists of only
a name and optionally a name extension. If filespec1 does not specify a drive
number, then all mounted diskettes are searched, and the first file
encountered matching filespec1's name and name extension is renamed. RENAME
change only the file's name and name extension; nothing else is changed.

RENAME command example:

RENAME XXX/DAT:1 YYY/OBJ The file XXX/DAT on the diskette currently
mounted on drive 1 has its name changed to YYY and its extension changed
to OBJ.

2.43. ROUTE

1. ROUTE
2. ROUTE,CLEAR
3. RDUTE,dev1[,dev2][,dev3]....

The purpose of the ROUTE command is to allow some flexibility from where the
keyboard and/or RS-232 input is received and to where display, printer and
RS-232 output is sent.

At the conclusion of a ROUTE command, any existing routes are displayed; if
none, nothing is displayed. ROUTE with no parameters does nothing except dis-
play the existing routes.

ROUTE,CLEAR clears all routes.

dev1 specifies the device being routed. dev2, dev3, etc. specify the
device(s) being routed to (the routed-to devices) when dev1 is an output
device or routed from (the routed-from devices) when dev1 is an input device.
For the Model I, the device codes are KB for the keyboard, DO for the display
PR for the printer and NL for null (meaning nothing is transferred). For the
Model III, RI for the RS-232 input and RO for the RS-232 output are added to
the above 3 codes. An input device (KB or RI) may not be routed to an output

DOS LIBRARY COMMANDS2-43

device (DO, PR or RO), and an output device may not be routed to an input
device.

Whenever dev1 is specified, ROUTE initially clears any previously existing
routes for that device and then establishes the routes specified by dev2,
dev3, etc., if any.

Any of the devices dev2, dev3, etc. may also be of the form MM=addr where
addr specifies the main memory location of a user routine to which dev1 is to
be routed. The first 12 bytes of the routine are reserved for use by DOS and
must not be altered by the user. Upon routing, the user routine is entered
via a CALL at the 13th byte, and it is the user's responsibility to save and
restore all registers, except AF, used by the routine and routines it calls.
If dev1 is an input device, the routine returns the new byte in register A
with a zero indicating there is no new input byte from that routine. If dev1
is an output device, upon entry to the routine, register C contains the byte
being outputted.

If dev1 is an output device, the output byte is sent to all routed-to devices
in the order given in the ROUTE command.

If dev1 is an input device, each routed-from device is queried in the order
given in the ROUTE command. If that device supplies a non-zero byte, the
queries stop and the byte is used as the input byte for the dev1. If no
routed-from device has an input byte, a zero is considered dev1's current
byte.

The maximum number of routes-to and routes-from, excluding MM=addr types, in
existence at one time is four for the Model I and six for the Model III.

WARNING!!! No editing of input or output characters is done during routing.
This may cause problems (i.e., display control characters causing the
printers to do unpredictable things).

ROUTE command examples:

1. ROUTE,PR,DO Printer output does not go to the printer but
instead goes to the display.

2. ROUTE,DO,DO,PR Display output goes to both the display and the
printer.

3. ROUTE,PR,DO,PR Printer output goes to both the display and the
printer. If the routes of both example 2 and 3 are active, the routing is
equivalent to the Model III TRSDOS function DUAL.

4. ROUTE,KB,RI (Model III only) Keyboard input characters come
from the RS-232 input device and not from the keyboard.

5. ROUTE,DO,RO (Model III only) Display output is sent to the
RS-232 output device and not to the display.

6. ROUTE,PR,MM=0FE80H Printer output is sent to the routine at main
memory location 0FE80H (the routine's actual entry point is 0FE8CH).

DOS LIBRARY COMMANDS 2-44

7. ROUTE,KB,KB,MM=0F800H Keyboard input comes from either the keyboard
or the routine at main memory location 0F800A. Input from the keyboard
has precedence.

8. ROUTE,PR,NL Printer output is discarded.

9. ROUTE,PR A11 routing for the printer is dissolved.
Printer output goes to the printer.

10. ROUTE,CLEAR All routes are dissolved, and all devices are
returned to their normal paths.

2.44. SETCOM (Model III only) Set RS-232 interface parameters.

SETCOM[,OFF][,WORD=w1][,BAUD=br][,STOP=sb][,PARITY=pp][,WAIT][,NOWAIT]

The SETCOM command optionally changes the state of the RS-232 interface and
always displays the state. For RS-232 discussion, see chapter 8 of the Model
III Operation and BASIC Language Reference Manual. The SETCOM command affects
only the standard RS-232 control blocks and routines.

If OFF is specified, the RS-232 interface is turned off. No other optional
parameters may be specified.

If any of WORD, BAUD, STOP or PARITY is not specified, the state for that
keyword is not changed.

WORI=w1 specifies the number of bits per transmission byte. w1 must be one
of 5, 6, 7 or 8.

BAUD=br specifies the transmission rate (the baud rate) for both sending and
receiving. The 16 allowable values for br are 50, 75, 110, 134, 150, 300,
600, 1200, 1800, 2000, 2400, 3600, 4800, 7200, 9600 and 19200.

STOP=sb specifies the number of stop bits to be used for each byte transmit-
ted. sb is either 1 or 2.

PARITY=pp specifies the parity to be used in the transmission where 1 = odd
parity, 2 = even parity and 3 = no parity.

WAIT or NOWAIT are mutually exclusive and specify whether or not the RS-232
input routine is to wait until an input byte is received and the output
routine is to wait until the current byte has been sent. If neither WAIT nor
NOWAIT is specified, the previous wait or no wait state remains.

SETCOM command examples:

1. SETCOM,WORD=8,BAUD=30d,STOP=1,PARITY=1,WAIT Activates the RS=232
interface, if not already active, and sets the interface for 8 bit bytes.
300 baud rate, one stop bit, odd parity and forces the RS-232 routines,
when called, to wait until an input byte is ready or until the RS-232
output device will accept an output byte.

DOS LIBRARY COMMANDS2-45

2. SETCOM,NOWAIT,PARITY=3,WORD=7 Activates the RS-232 interface, if
not already active, and sets the interface for 7 bit bytes, no parity and
causes the RS-232 routines not to wait until an input byte is ready or
the RS-232 output device will accept an output byte. The TRS-80 interrupt
routines will handle the actual byte input or output with the RS-232
device. The other parameters not mentioned in the command are not
changed.

3. SETCOM,OFF The RS-232 interface is deactivated. The current
interface specification is remembered.

2.45. STMT Display specified message.

STMT,msg

Since normal DOS commands are always displayed, this command normally has
nothing to do since its function, to display the message msg, has already
been done. However, if this command was invoked via DOS-CALL (which does not
display the DOS command), the message msg is displayed.

STMT is one of 3 ways in chaining to display a message without a pause. This
allows multiple line instructions to be displayed, with the last line being a
PAUSE and the others being STMTs.

STMT command examples:

1. STMT PHASE ONE COMPLETED This is simply an announcement to the
terminal operator that phase one (whatever that was) has been completed.
DOS does not pause.

2. STMT DISMOUNT AND STORE AWAY DISKETTE XXX
 PAUSE AND MOUNT DISKETTE YYY ON DRIVE 2.

This example illustrates the combined use of the STMT and PAUSE commands
to give instructions and wait until they are carried out.

2.46. SYSTEM Change system options.

SYSTEM,[password1:]dn1[,AA=yn][,AB=yn][,AC=yn][,AD=yn][,AE=yn]
[,AF=yn][,AG=yn][,AI=yn][,AJ=yn][,AL=al][,AM=am][,AN=an]
[,AO=ao][,AP=ap][,AQ=yn][,AR=yn][,AS=yn][,AT=yn][,AU=yn]
[,AV=av][,AW=aw][,AX=ax][,AY=yn][,AZ=yn][,BA=yn][,BB=yn]
[,BC=yn][,BD=yn][,BE=yn][,BF=yn][,BG=yn][,BH=yn][,BI=bi]
[,BJ=bj][,BK=yn][,BM=yn][,BN=yn]

The NEWDOS/80 system diskette whose control information is being
updates/displayed by this command is mounted on drive dn1. If passwords are
enabled, password1 must be specified and be equal to the diskette's master
password. If no optional parameters are specified, then only a display of
existing options is given. The optional parameters may be specified in any

DOS LIBRARY COMMANDS 2-46

order, and only those parameters specified have their values changed in the
diskette's control data (3rd sector on the diskette). Parameters not
specified are not changed.

If many options are being changed, it may be necessary to perform multiple
SYSTEM commands as the DOS buffer is limited to 79 characters per command.

It is anticipated that additional options will be specified as time proceeds.

Changes to a system diskette's system options do not affect the computer
operations until that system diskette is mounted on drive 0 and a reset done.

AA=yn If AA=Y, passwords are enabled. If AA=N, passwords are disabled.

AB=yn If AB=Y, the system is to operate in RUN-ONLY mode. SYSTEM options
AD=N, AE=N and AF=N are forced at reset time, and the pressing of ENTER to
override the auto command is disallowed. The user must have a proper auto
command (see AUTO, section 2.4) that will either invoke a user program or
execute a CHAIN file that will eventually invoke a user program. In RUN-ONLY
mode, if the system finds itself at normal DOS READY or MINI-DOS READY, it
will go into an endless loop after displaying 'RUN ONLY STOPPEDI! PRESS 'R'
FOR RESET'. Upon receiving R, the DOS command BOOT (see section 2.7) will be
executed. BASIC honors RUN-ONLY by disabling BREAK, treating LOAD without R
or V as an error, and by not allowing any direct statements. If AB=N, the
system is in normal command mode.

AC=yn (Model I only) If AC=Y and if SYSTEM option AJ=Y, the NEWDOS/80's
debounce routine is used. If AC=N or SYSTEM option AJ=N, the NEWDOS/80's
debounce routine is bypassed.

AD=yn If AD=Y, 'JKL' is enabled, and if AD=N, 'JKL' is disabled.

AE=yn If AE=Y, '123' is enabled as the method to invoke DEBUG (see section
4.1). If AE=N, '123' is disabled.

AF=yn If AF=Y, 'DFG' is enabled as the method of invoking MINI-DOS (see
section 4.2). If AF=N, 'DFG' is disabled.

AG=yn If AG=Y, BREAK is considered a normal input key with code = 01. If
AG=N, the BREAK key is not considered a normal input key and its occurrence
is changed to the null key code 00. The state of the BREAK key is set
according to option AG at reset and then again every time the system returns
to normal DOS READY. DOS command BREAK may be used to enable or disable the
BREAK key until the next normal DOS READY. Also, programs may enable the
BREAK key by storing a 0C9H byte in Model I location 4312H (Model III
location 4478H) or disable the BREAK key by storing a 0C3H byte in that
location.

AH=yn Not defined in NEWDOS/80, version 2. Formerly, this dealt with de-
laying the disabling of timer interrupts during disk I/O to gain better clock
accuracy. This is no longer done.

DOS LIBRARY COMMANDS2-47

AI=yn (Model I only) If AI=Y, lower case modification has been installed
in the computer and AI=N it is not. User programs may test for bit 4 of 436CH
for this state, 1 if AI=Y and 0 if AI=N. Currently, DEBUG and SUPERZAP use
this flag to decide whether memory displays can display lower case.

AJ=yn If AJ=Y, NEWDOS/80's keyboard intercept routine is active. This
routine contains repeat key function, 'debounce' (Model I only) and one of
the methods used to spot 'JKL', '123' and 'DFG' (the other being off the
timer interrupts). If AJ=N, NEWDOS/80 does not intercept the keyboard two
byte address vector at 4016H and

1. The repeat key function for the Model I is not active regardless of
the SYSTEM option AU. The Model III reverts to the ROM repeat key
function.
2. 'debounce' (Model I only) is not active regardless of SYSTEM option AC
setting.
3. 'JKL', '123' and 'DFG' can only be triggered via the interrupts,
resulting in many more spurious key input characters.

If the up-arrow key is depressed all during the reset/power-on sequence, AJ=N
is forced; this is necessary for those programs that eventually overlay the
DOS in main memory.

AK=yn Not defined in NEWDOS/80, version 2. Formerly, this option dealt
with allowing 'JKL' to pass graphic characters to the printer. This has been
incorporated into SYSTEM option AX.

AL=al al (value 1 - 4) specifies the number of physical drives in the sys-
tem. If your system only has one drive, setting al = 1 will limit the system
to only checking for that one drive. Though al can be set to 255, it should
never exceed 4.

AM=an am (value 0 - 255 where 0 = 256) is the number of tries allowed for
a disk I/O before it is declared in error. The original DOSS used a value of
10.

AN=an an = the default drive number for the DIR command.

AO=ao When creating a file and when the user lets the system choose the
diskette to contain the file by not specifying a drive number in the
filespec, the system will first search all the drives for an existing copy of
the file. If it does not find an existing copy, the system will start
searching at drive so, and will search that and higher numbered drives until
a free FDE is found. It will not search a drive whose number is less than ao.

AP=ap ap is a memory address, which if other than 0 and is within the
range of existing memory, is stored as DOS's HIMEM address value in the two
bytes at Model I location 4049H (Model III location 4411H).

AQ=yn If AQ=Y, the CLEAR key is enabled, and if AQ=N, the CLEAR is
disabled if SYSTEM option AJ=Y.

AR=yn If AR=Y, COPY, formats 5 and 6, are allowed without diskette
password checking even though passwords are enabled. If AR=N, passwords are
required if passwords enabled.

DOS LIBRARY COMMANDS 2-48

AS=yn (Model I Only) If AS=Y, BASIC will convert input text character
strings from lower to upper case. This is useful when lower case hardware is
not installed or when lower case drivers are not used as it is very possible
to input lower case characters (using the shift key) and have BASIC display
them as upper case even though they are really lower case. The user can stare
forever at a compare that looks equal on the display, but BASIC computes as
unequal. If AS = N, BASIC will leave the text character strings alone. This
option does not affect string characters input as data rather than as part of
text.

AT=yn AT=N puts chaining into record mode, meaning that only requests for
full records come from the chain file; single char key input request are
honored from the keyboard. AT=Y puts chaining in single character mode
meaning that all requests for an input key come from the chain file.

AU=yn AU=Y turns on the clock driven repeat key function. The first repeat
will delay option AV number of 25 ms intervals. Subsequent repeats will enter
as fast as the program asks for them but not more than 12 per second. AU=N
turns off the repeat key function, eliminating repeat keys on the Model I and
shifting to the ROM repeat key function on the Model III.

AV=av AV is used when AU=Y. av is the number of 25 ms intervals to pass
between the key depression and the acceptance of the 1st repeat of that char-
acter. Subsequent repeats are as fast as the program wants them but not more
than 12 per second.

AW=av is the number of write-with-verify disk I/O tries allowed. This I/O
retry count works in conjunction with option AM=am with each retry under AW
taking place only after the sector verify read has failed am number of times.
Formerly, if sector write encountered no error and the verify read did result
in an error, it was left to the user to retry the write. Now, if aw is
greater than 1, the write will automatically be retried in the cases where
the write was apparently good but the verify read failed.

AX=ax This is ASCII code of the highest printable character for the
printer. It is used by system routines to determine when to substitute blanks
or periods in place of ASCII codes higher than this value. This value must
not exceed 255. This high ASCII code is stored in the one byte at Model I
location 4370H (Model III location 4290H).

AY=yn is used only during resets wherein DOS senses that it was not active
immediately prior to the reset (i.e., reset after power-on or after execution
of non-disk BASIC). AY=Y causes the operator to be asked for date and time.
AY=N bypasses this query and causes date and time to be set to zeroes.

AZ=yn is used only during resets wherein DOS senses that it was active
immediately prior to the reset. AZ=Y causes the operator to asked for date
and time. AZ=N causes date and time to be left as they were prior to the
reset.

BA=yn BA=Y causes a reset to activate 'ROUTE,DO,NL', thus causing all dis-
play output, including the DOS and BASIC banners, to be lost until the
operator or a user program executes either 'ROUTE,CLEAR' or 'RDUTE,DO'. BA=N
disables this reset action.

BB=yn (Model III only) BB=N informs the system that the clock interrupts

DOS LIBRARY COMMANDS2-49

occur 60 times a second. BB=Y informs the system that the clock interrupts
occur 50 times a second. This option does not set the clock to perform as
such, but only acknowledges that it does.

BC=yn BC=Y means the operator can manually pause or cancel chaining. BC=N
means the operator is not allowed to manually pause or cancel chaining. RUN
ONLY forces BC=N.

BD=yn BD=Y means the operator can override the AUTO command at reset by
holding down the ENTER key. BD=N means he/she can't. RUN ONLY forces BD=N.

BE=yn BE=Y enables the DOS command R to repeat the previous DOS command
(see section 2.41). BE=N causes the R command to simply return to DOS READY.

BF=yn (Model I only) BF=Y performs at reset/power-on time the equivalent
of the DOS command LCDVR,Y (see section 2.29). BF=N performs the equivalent
of LCDVR,N. However, if DOS senses that the lower case hardware is either not
installed or is not operating, BF=N is forced.

BG=yn BG=Y performs at reset/power-on time the equivalent of the DOS
command LC,Y (see section 2.28). BG-N performs the equivalent of LC,N

BH=yn At reset/power-on time BH=Y enables cursor blinking, and BH=N
inhibits it.

BI=bi At reset/power-on time, the numeric value bi is set as the cursor
character's value, excepting that if bi = 0, then the standard cursor
character value is used (95 for the Model I and 176 for the Model III).

BJ=bj Option BJ provides a minimal control for NEWDOS/80 when a CPU speed
up modification is installed that is to continue operation during disk
operations. This option multiplies (roughly) by bj the number of Z-80
instructions executed during certain timing loops used internal to NEWDOS/80.
bj must be an integer greater than 0 and equals the number of times the CPU
has been speeded up. Set bj = 1 if the loops are not to be lengthened. If the
loops are to be lengthened, bj must always be rounded up in the cases where
the new CPU speed is not an even multiple of the original Model I or Model
III speed. Option BJ does NOT perform the actual CPU speed switching.

BK=yn BK=Y allows the DOS command WRDIRP and the W and C functions of
DIRCHECK to be executed. BK=N causes these functions to be rejected with
'DISK ACCESS DENIED'.

BM=yn BM=Y causes diskette formatting to verify read sectors in a separate
VERIFYING phase after all tracks have been formatted. This verify read is in
addition to the verify read done on a track's sectors immediately after the
individual track was formatted. BM=N bypasses this VERIFYING phase, deeming
as sufficient the verify sector read done when the individual track was
formatted.

BN=yn (Model I only) BN=N causes the write of single density diskette
directory sectors to use the address mark readable by Model I TRSDOS. BN=Y
causes the write of single density diskette sectors to use the address mark
readable by Model III NEWDOS/80. BN=Y should only be used where it is
required that single density diskettes be NEWDOS/80 version 2 exchangeable
between the Model I and the Model III.

DOS LIBRARY COMMANDS 2-50

Though the information contained in the directories used by Model I
TRSDOS, Model I NEWDOS/80 and Model III NEWDOS/80 is the same (except for
some additions by NEWDOS/80), the address mark byte (part of the magnetic
format and identification bytes that surround each 256 bytes of user data
on the soft sectored diskettes) used to indicate the directory sectors
are 'protected' is different on the Model III than it is on the Model I
for single density diskettes.

The changing of SYSTEM option BN does not in itself change the address
mark of any directory sectors. All this does is set the protected sector
write routine in DOS to write the specified address mark Whenever a pro-
tected sector is written or rewritten to disk. To set all sectors of a
single density diskette directory to the proper address mark, use either
DOS command WRDIRP or DIRCHECK with the W option. Warning!!! If a single
density diskette has been used on the Model III or has been used on the
Model I where BN=Y and the diskette must now be used with Model I TRSDOS,
the user must set BN=N and rewrite the directory sector address marks
using WRDIRP or DIRCHECK with option W. This must be done even though,
with BN=N, SUPERZAP under NEWDOS/80 on the Model I shows the directory
sectors protected; this is because Model I NEWDOS/80 accepts either
address mark value as 'protected' though it only writes the one value
specified by option BN.

System option codes BO and up are reserved for future definition.

SYSTEM command examples:

1. SYSTEM,0,AL=4,AA=Y,AU=Y,AV=20,AT=Y The SYSTEM control parameters
AL, AA, AU, AV and AT are changed on the current system diskette mounted
on drive 0. All the other SYSTEM parameters are left unchanged. The full
SYSTEM specification is then displayed. These changes are not used to
control NEWDOS/80 until the next reset/power-on.

2. SYSTEM,2,AP=0FF0AH,AN=1,AX=126 The SYSTEM control parameters
AP, AN and AX are changed in the control sector of the diskette currently
mounted on drive 2. No other SYSTEM parameters are changed. The full
system specification contained on that diskette is then displayed. For
the SYSTEM parameters contained on that diskette to control NEWDOS/80,
that diskette must be a NEWDOS/80 version 2 system diskette, must be
dismounted from drive 2 and remounted on drive 0, and a reset/power-on
must be done.

2.47. TIME Set the real time clock.

TIME[,hh:mm:ss]

If no parameters are specified, the current times is displayed in hh:mm:ss
format.

If hh:mm:ss is specified, the clock is set to time hh:mm:ss where hh is a 2
digit hour value, 00 - 23, mm is a two digit minute and ss is a two digit
seconds value. No check is made op the validity of the values. Each of the
three values is converted to a single byte value and stored into its byte of

DOS LIBRARY COMMANDS2-51

the clock. The clock three bytes start at model I location 4041H (model III
location 4217H) and are in seconds, minutes, hours order.

At reset/power-on the clock is set according to SYSTEM option AY or AZ. The
clock is updated once a second. The user should not rely upon the clock for
an accurate value as disk I/O frequently and interrupt routines infrequently
run so long with interrupts disabled that one or more timer interrupts will
be missed, causing the clock to run slow. The real time clock is not a
hardware clock, but instead is maintained by software that is not aware of
the lost timer interrupts.

TIME command examples:

1. TIME,15:23:00 The clock is set to 3:23 PM.

2. TIME The current time is displayed.

2.48. VERIFY Require verify read after every disk write.

VERIFY[,yn]

NEWDOS/80 performs verify read after all of its directory writes and after
all sector writes when logical record or single byte I/O is used. It does not
perform verify reads when full sector writes are done via the 4439H vector.

VERIFY or VERIFY,Y Diskette writes done via the 4439H vector are verify
read. A verify read means the sector is read after it is written. If the
sector was written illegible or with bad parity, an error will be triggered.
A byte for byte data compare is not done. However, if the verify read detects
an error and SYSTEM option AW is not equal to 1, the write and verify read
will be done again since the system still has access to the data that should
have been placed into the diskette sector.

VERIFY,N Diskette full sector writes done via the 4439H vector
are not verify read.

COPY, EDTASM and BASIC SAVE's write the file completely without validity
read, but then read back the entire file as a verify read. All BASIC disk
data writes to print/input files, marked item files, fixed item files or
field item files (where record length is not 256) perform verify read due to
the fact that byte rather than sector I/O is used. Field item files with
record length 256 use sector I/O and are not verify read unless VERIFY is on.

DOS LIBRARY COMMANDS 2-52

2.49. WRDIP Write directory sectors protected.

WRDIRP,dn1

WRDIRP causes the directory sectors for the diskette in drive dn1 to be read
and rewritten in the currently defined protected state for the current
computer (see SYSTEM options BN and BK).

This command is used where single density diskettes are to be exchanged under
NEWDOS/80 version 2 between the model I and III.

This command enables the user to set the directory to the proper read protect
state while under MINI-DOS, since it is most likely he/she will find out
about the problem when in the middle of doing something else (and thus can't
get to DIRCHECK). CAUTION!!! This command uses the directory starting granule
number from the 3rd byte of the boot sector to find the directory. It then
checks to see if the FPDE's for BOOT/SYS and DIR/SYS are present. If these
checks pass, it then changes what it thinks are the directory sectors all to
protected status. Do NOT use this command unless you are sure the only
problem is the different protection status between the model I and model III;
if you have doubts, use the W function of DIRCHECK.

If SYSTEM option BK = N, the DOS command WRDIRP is disabled.

WRDIRP command example:

WRDIRP,1 For the diskette mounted on drive 1, the directory
address marks are set for the current computer and, if Model I, for the
setting specified by SYSTEM option BN.

DOS ROUTINES3-1

3. DOS ROUTINES

3.1. Specifications Defined
This chapter specifies the DOS routines that are available for use by machine
language programs. If you are neither a Z-80 programmer nor interested in
Z-80 machine code, you should bypass this chapter. Readers of this chapter
are assumed to be knowledgeable of Z-80 machine code and at least one
assembly language for the Z-80.

These DOS routines have entry and exit conditions, and rather than repeat
them in each routine's specification, some of the conditions are defined here
with the using routine's specification simply referring to the condition's
code.

A. Only register AF is altered by the routine. Any other registers used by
the routine are saved on entry and restored on exit.

B. On exit, Z state is set if no error is encountered during the routine's
execution. NZ state is set if a DOS error is encountered, and register
A contains a DOS error code. The setting of Z and NZ takes precedence
over the setting of other flags such as C and NC.

C. On entry, DE points to an open FCB.

There are incompatibilities with TRSDOS in the use of some of these routines.
They are discussed briefly in the routines where they occur, so study them
carefully. The reader should also be aware of the differences in the way the
FCB fields NEXT and EOF are maintained (see FCB specification, section 5.9).

The discussion of each routine gives its entry address (the address to be
used in the CALL or JP Z-80 instruction), then its title (if one is
appropriate), and then its specification.

Unless otherwise specified, the DOS routine uses the invoker's stack. Unless
specified as a dead end routine, the DOS routine exits to the caller.

Many of these routines use a FCB (see section 5.9). NEWDOS/80 on both the
Models I and III and Model I TRSDOS all use a 32 byte FCB while Model III
TRSDOS uses a 50 byte FCB. NEWDOS/80 will run with user programs having the
50 bytes FCB but will only use the first 32 bytes of those FCBs. Programs
using a 32 byte FCB with Model III TRSDOS will have problems.

The routines listed below are not necessarily in ascending numeric order.

3.2. 402DH No-Error Exit
Dead end routine. Programs concluding with no error jump to 402DH. DOS checks
its own state in the following order.

If either MINI-DOS or DOS-CALL, the stack pointer is set to where it was
before the last DOS command; otherwise it is set to DOS's stack area and
the BREAK key is enabled/disabled according to system option AG.

DOS ROUTINES 3-2

If DOS-CALL and if either not chaining or chaining is not to be continued
at the current DOS level, all registers except AF are restored to as they
existed on DOS-CALL entry, Z state is set, and a return is made to the
DOS-CALL invoker. If this was the outermost DOS-CALL level, DOS is taken
out of DOS-CALL state.

If RUN-ONLY and if chaining is not active, the message 'RUN ONLY
STOPPED!! KEY 'R' FOR RESET.' is displayed, DOS loops waiting on the
reply, and then executes DOS command BOOT (see section 2.7).

If DOS-CALL and if chaining is to continue at the current DOS-CALL level,
DOS waits for the next command from the chain file.

If MINI-DOS, then MINI-NEWDOS/80 READY is displayed, and DOS waits for
the next command.

If chaining is active, DOS waits for the next command from the chain
file.

NEWDOS/80 READY is displayed and DOS waits for the next input command.

3.3. 4030H Error-already-displayed DOS Error Exit
Dead end routine. Programs concluding with an error that is either already
displayed or not to be displayed jump to 4030H. DOS action is the same as for
402DH except as follows:

If CHAINING, chaining is aborted.

If DOS-CALL, the current DOS-CALL level is exited in the same manner as
for 402DH, except that C state is set.

3.4. 4400H No-Error Exit. Performs identical to 402DH.

3.5. 4405H Enter DOS and execute a command
Dead-end routine. DOS is entered, and the stack pointer is set to DOS's own
area. HL points to a command, terminated by a 0DH byte, that DOS is to use as
its next command. DOS moves this command to its own 8$ byte command buffer
and then executes it.

3.6. 4409H DOS Error Exit
Dead end routine if bit 7 of register A equals 0. Programs terminating with a
DOS error jump to 4409H with the DOS error code in register A and bit 7 of
register A equal 0. Depending upon DOS's state, the following actions occur:

If CHAINING, chaining is aborted.

DOS ROUTINES3-3

If DOS-CALL, the current DOS-CALL level is exited in the same manner as
for 402DH exit, except NZ and NC state is set and the DOS error code is
in register A. The error msg is not displayed.

Otherwise the DOS error message is displayed, and an exit is taken to
402DH.

A program may CALL 4409H to display an error msg by placing the error code in
A and setting bit 7 of register A equal to 1. The appropriate DOS error
message will be displayed. On return, only the F register has been altered.

The Model I TRSDOS will print diagnostics if bit 6 of register A equals 0.
The Model III TRSDOS displays only the error number if that bit equals 0 and
the error message if that bit equals 1. NEWDOS/80 ignores the value of that
bit.

Debugging hint. By setting the 4 bytes at 4409H equal to CD 0D 44 C9, the
error display routine can be made to invoke DEBUG instead of displaying the
error message.

3.7. 440DH Enter DEBUG
User programs have two methods of entering the DEBUG facility: (1) by use of
Z-80 instruction RST 30H and (2) by the Z-80 instruction CALL 440DH. When
done with the DEBUG facility, DEBUG command G will return to the instruction
following the RST 30H or the CALL, provided the PC register was not changed.

3.8. 4410H (447BH in Model III) Enquene a user timer interrupt routine.
Registers AF, BC, DE and HL are altered by this routine. On entry, DE points
to the user interrupt routine, which must conform to the following format:

1st 2 bytes. Used by DOS as a forward chain pointer. On entry, the two
bytes can be any value.

3rd byte. The number of 25ms intervals to pass between invocations of the
user's routine. Example, if the routine is to be invoked every second,
the 3rd byte must be set = 40 (28H). DOS does not alter this byte.

4th byte. Count down value to the next invocation. On entry, this byte
should be properly initialized to a value greater than 0 but less than or
equal to the value in the 3rd byte. Every 25ms interrupt, DOS decrements
this value. If the result is non-zero, this routine is bypassed for this
25ms interrupt. If the result = 0, the value from the 3rd byte is moved
into the fourth byte, registers HL, DE, BC and AF are saved, and the user
routine is called at its 5th byte. Any other registers used by the
routine must be saved/restored by it. Interrupts are disabled, and the
user routine must not re-enable them.

While a user interrupt routine is in the interrupt chain, it must not be
altered in any way except by a routine that runs with interrupts
disabled; the first two bytes must never be altered.

DOS ROUTINES 3-4

Model I TRSDOS uses the 4 vectors, 4410H, 4413H, 4416H and 4419H, for its
user interrupt routine handling. NEWDOS/80 uses only 4410H and 4413H for
non-compatible handling of these routines. Any program using a 25ms
interrupt user routine in TRSDOS must be modified to work under
NEWDOS/80. This is a major incompatibility between the two Model I
systems.

Model III TRSDOS has not yet made any provision for user timer routines,
using 4410H - 441BH for other purposes, including HIMEM.

Model III NEWDOS/80 continues with the user timer interrupt routine
mechanism used on the the Model I, except that 447BH is the routine
enqueue vector instead of 4410H, and in order to continue with 25 ms
counting where the Model III clock actually counts in either 30ths or
25ths of a second, a second pass through the user routine check and
invocation sequence is done when necessary to bring 25ms counting up with
the real clock. If a user routine is being invoked every 25 ms, the
routine must be prepared to accept two invocations within the same timer
interrupt.

3.9. 4413H Dequeue a user timer interrupt routine.
Registers AF, BC, DE and HL are altered. The user interrupt routine (as
described in section 3.7) pointed to by register DE is taken out of the 25ms
interrupt chain, if it is in the chain. The routine no longer participates in
the interrupts and may now be altered at will by the user.

See section 3.8 for TRSDOS incompatibility.

3.10. 4416H Keep drives rotating
If the disk drives are rotating, reselect the current drive, thereby keeping
the drives rotating for approximately 2.4 seconds more. Register AF is
altered.

This routine does not exist in TRSDOS; see section 3.8 for incompatibility.

3.11. 4419H DOS-CALL Execute a DOS command and return.
This routine is DOS-CALL. DOS does not shift to its own stack area, but
instead remains with the user's stack. All registers except AF are saved in
the stack and will be restored on return. The command to be executed is
pointed to by HL, must be less than 80 characters, must terminate with byte
0DH, and can be anything legal for the current state DOS is in. DOS sets
DOS-CALL state, if not already set, saves the current stack pointer, and
executes the command. The command can be the invocation of a user program.

DOS-CALL is now legal under CHAINING where it was not in NEWDOS/80 Version 1.

DOS ROUTINES3-5

DOS-CALL is the way BASIC executes the DOS command contained within the BASIC
statement CMD"xx" where xx is the DOS command.

The DOS-CALL caller is responsible for assuring that memory conflicts do not
arise and that sufficient stack space is available.

Nested calls to DOS-CALL may be executed. Upon exiting from a DOS-CALL level,
the return is made to the next outer level. When the outermost level is
exited, DOS leaves DOS-CALL state.

If the DOS command invokes a program, that program may use its own stack
area, and it must exit using one of the three exits: 402DH, 4030H or 4409H.
On exiting, the program may store a 2 byte parameter in 4403H, 4404H (17411,
17412 decimal) for use by the caller.

The 4419H vector is used differently in TRSDOS; see section 3.8 for
incompatibility.

See section 4.4 for further discussion of DOS-CALL.

3.12. 441CH Extract a filespec
From the text pointed to by HL, extract a filespec, place it in the area
pointed to by DE and terminate it with the byte 03H. Registers AF, BC and HL
are altered.

If the first text character is A - Z or 0 - 9, or if the first text character
is * and the next character is A - Z or 0 - 9, text is moved from the HL area
to the DE area until a character that is not /, ., :, A - Z, or 0 - 9 is
encountered or until 32 bytes have been transferred. If less than 32 bytes, a
03H byte is placed after the last byte in the DE area to indicate end of
filespec, and a return is made with Z state set. If the filespec is more than
31 characters it is considered improper as discussed in the following
paragraph.

If the first character was improper, or if the first character was * but the
2nd was improper, a return is made with NZ state set.

On exit, if the terminator/improper byte equals 03 or 0DH, then HL points to
that byte; otherwise HL points to the next byte.

The user will notice that NEWDOS/80 doesn't check for an exact filespec; it
leaves this to be done by the OPEN routines, 4420H and 4424H.

3.13. 4420H Open a FCB to a new or existing disk file
Conditions 3.1.A and B hold. The entry requirements are the same as for
4424H, which is executed immediately as a subroutine to this routine. If
4424H is successful in opening an existing file, no further action is
required here, and an exit is taken with Z and NC states set. If the file was
not found, this routine proceeds to create the file.

If the filespec in the FCB pointed to by register DE specifies an explicit

DOS ROUTINES 3-6

drive number and the diskette mounted on that drive has a free FDE, the file
is created on that diskette whether or not the diskette actually has any free
space. If the filespec did not specify a drive number, the system starts
searching mounted diskettes, starting with the drive number specified by
SYSTEM option AO and preceding through higher numbered drives until a
diskette with a free FDE is found. If a free FDE is not available, the file
cannot be created, and the error exit is taken.

Creating a file consists of converting a free FDE to a FPDE. This entails in-
serting the name and name extension (if any), encoding the password (if any)
as both the update and access passwords, storing the LRECL (0 means 256) from
register B, setting the EOF equal to 0, setting access level as FULL, and
marking the file non-system, non-invisible. No diskette file space is
assigned to the file at this time; in fact, DOS doesn't even look to see if
the diskette has any free space. Note, though the LRECL is stored in the FPDE
during file creation, it is never used. Each subsequent open of the file uses
the LRECL provided in register B.

After the file is created, the DOS routine at 4424H is called to perform the
OPEN. On exit after a successful file create and open, Z and C states are
set.

3.14. 4424H OPEN a FCB to an existing file
Conditions 3.1.A and B hold. On entry, register DE points to a FCB containing
the filespec for the file to be opened, HL points to a 256 byte buffer to be
used during disk sector reads and writes for this FCB, and B contains the
LRECL (0 = 256). If an explicit drive number was specified in the filespec,
the search for the file is limited to that drive; otherwise the search starts
with drive 0 and proceeds to higher drives until a file with the specified
name and name extension is found. If no file is found, the error exit is
taken.

If passwords are enabled and the file has non-null passwords, then an error
exit is taken if the filespec does not contain either the update or the
access password. If passwords are disabled or the file has no passwords or
the update password is specified, the FCB's access level is set to FULL;
otherwise the access level from the FPDE is placed into the FCB to limit the
type of access for this file.

The FCB is converted from containing the filespec to containing information
about the file, which will be used while the FCB is open to reduce the amount
of directory I/O which would otherwise be required. The conversion entails
copying the EOF and the 1st 4 extents from the FPDE, storing the LRECL from
register B, setting bit 7 of the FCB's 2nd byte equal to 1 if LRECL is not
equal to 0 (to indicate logical record processing), setting NEXT equal to 0,
storing the drive number and the FPDE's DEC code, storing the 256 byte buffer
pointer from register HL, setting the access level, setting bit 5 of the
FCB's 2nd byte equal to 1 to indicate that the buffer does not contain the
current, sector and setting bit 7 of the FCB's 1st byte equal to 1 to
indicate that the FCB is open.

DOS ROUTINES3-7

3.15. 4428H CLOSE a FCB. Conditions 3.1.A, B and C hold
This routine dissolves the connection between the FCB and the file. If bit 4
of the FCB's 2nd byte equals 1, the FCB's buffer is written to disk like a
4439H call. If the FCB's EOF is different from that in the FPDE, the FPDE is
updated for the new EOF. If the file has excess granules beyond EOF and if
automatic space deallocation is allowed, the excess granules are released.
The FCB is then converted back to contain a filespec consisting of the file
name, name extension (if non-blank) and the drive number. This filespec can
be used later to re-open the file, provided a password is not required.

3.16. 442CH Kill the FCB's associated file
Conditions 3.1.A, B and C hold. The file associated with the FCB is killed in
the same manner as for DOS library command KILL (see section 2.27). The FCB
is set to all zeroes.

3.17. 4430H Load a program file
Conditions 3.1.A and B hold except the registers AF, BC and HL are altered
and on exit HL (and 4403H - 4404H (17411 -17412 decimal)) contain the
program's entry address. On entry, register DE points to a FCB containing the
program file's filespec. The load is done the same as for DOS library command
LOAD (see section 2.32).

3.18. 4433H Load and commence execution of a program file
Dead end routine. On entry, DE points to a FCB containing the program file's
filespec. Registers AF and BC are altered; all other registers are passed on
unchanged to the program when its execution begins. The file open, load and
commence execution are done the same as when DOS executes a command that is
not a library command, excepting that there is no default name extension. If
an error occurs during the open or load, DOS exits to 4409H. If DEBUG is
active (see section 2.17), DEBUG is entered just before the program commences
execution.

3.19. 4436H Read sector or logical record from disk
READ a disk sector or move a logical record from the FCB's buffer to the
caller's buffer. Conditions 3.1.A, B and C hold. If bit 7 of the FCB's 2nd
byte equals 0, the sector represented by the high two bytes of the NEXT field
is read into the FCB's buffer and, if no error or if error code 6 (sector
read protected), the NEXT field is advanced 256 bytes. If an error other than
code 6 occurs, the NEXT field is not advanced, meaning the user can retry to
read the same sector.

If bit 7 of the FCB's 2nd byte equals 1, then a logical record of length
equal to the FCB's LRECL (where 0 means 256) is moved from the FCB's buffer
to the buffer pointed to by register HL on entry. As each byte is moved, the
NEXT field is incremented. When the FCB's buffer is empty, the next file
sector is automatically read into it and byte movement continues. If an error

DOS ROUTINES 3-8

occurs, including error code 6, the logical record move terminates, leaving
NEXT advanced for the number of bytes moved.

If bit 1 of the FCB's 1st byte equals 1, the NEXT and EOF fields are
considered RBA's within the diskette rather than within a file, thus giving
the user the capability to read a diskette, rather than a file. The use of
bit 0 of the FCB's first byte is defined in section 3.20 below. DOS routines
0013H, 001BH, 4439H, 443CH and other routines that indirectly read or write
sectors also operate as such if any of these two bits are on. The use of
these 2 bits is incompatible with TRSDOS.

One incompatibility between NEWDOS and TRSDOS occurs when the program reads
the EOF from the FCB to determine the number of bytes in the file. However,
in many cases the user does not have to know what the EOF is. Instead, for
both TRSDOS and NEWDOS, the user can read the file sector by sector, waiting
for either of the two EOF errors. If the error code is 1CH (END OF FILE
ENCOUNTERED), then the file ends on a sector boundary and the last sector
read successfully was the file's last. If the error code was 1DH (PAST END OF
FILE), then the last sector successfully read was also the file's last, but
was only a partial sector with the value in FCB+8 equaling the number of
bytes in that sector belonging to the file. Remember, this is true for both
TRSDOS and NEWDOS; thus the same code can work for both.

3.20. 4439H Write sector or logical record to disk
WRITE without verify a sector to disk or move a logical record from the
caller's buffer to the FCB's buffer. Conditions 3.1.A, B and C hold. IF bit 7
of the FCB's 2nd byte equals 0, the disk sector as defined by the NEXT field
is written with the contents of the FCB's buffer. Unless VERIFY is on (see
section 2.48), verify read is not done. If no error, and if the lower order
byte of NEXT equals 0, the NEXT field is advanced 256 bytes. Whether or not
NEXT was advanced, if NEXT now exceeds EOF or if bit 6 of the FCB's 2nd byte
equals 0, EOF is set equal to NEXT. If an error occurred, NEXT is not
altered, thus allowing the user to retry to write the same sector.

If bit 7 of the FCB's 2nd byte equals 1, a logical record of length equal to
the FCB's LRECL (0 means 256) is moved from the caller's buffer, pointed to
by register HL on entry, to the FCB's buffer. With each byte's move, NEXT is
incremented, and if NEXT now exceeds EOF or if bit 6 of the FCB's 2nd byte
equals

EOF is set equal to NEXT. When the FCB's buffer fills, the buffer is written
to the appropriate disk sector with verify read and then the logical record
move continues, filling in the FCB's buffer for the next file sector.
Whenever an error occurs, the logical record move terminates, leaving NEXT
advanced for the number of bytes moved.

Bit 1 of the FCB's 1st byte functions as described in section 3.19. If bit 0
of that byte equals 1, then sectors are written protected (error code 6 on
sector read).

If a verify read is done after the write of a protected sector, error code 6
is not returned to the caller as an error.

A significant incompatibility with TRSDOS lies in the fact that when a sector

DOS ROUTINES3-9

is written to disk in NEWDOS/80 and the low order byte of NEXT is non-zero,
NEXT is not advanced by 256 bytes. In this case, NEWDOS/80 assumes that the
caller is writing the last sector of the file (though it need not be) that is
only partially full, and that NEXT already is the proper RBA value for EOF
(if EOF is to be updated by the write).

One incompatibility between NEWDOS and TRSDOS is in setting the final EOF for
a file that is written sector by sector but usually does not end on a sector
boundary. However, if the program knows when it is about to write the last
sector, whether partial or full, and can store the desired low EOF byte value
in FCB+5 just before writing that last sector, both TRSDOS and NEWDOS will
exit from that write with the same EOF. Thus, in this instance, the same
program code will work for both TRSDOS and NEWDOS, and no incompatibility
exists.

3.21. 443CH Write sector or logical record to disk with verify read
This routine is identical to 4439H, except that a verify read is always done
after a sector write.

3.22. 443FH Position FCB to start of file
Conditions 3.1.A, B and C hold. If the FCB has a sector awaiting write (bit 4
of FCB 2nd byte = 1), it is written as a 4439H call. The FCB NEXT field is
set = 0, Bit 5 of FCB 2nd byte is set = 0 to indicate the buffer does not
contain the current sector.

3.23. 4442H Position FCB to a specified file record
Conditions 3.1.A, B and C hold. The NEXT field is set to the RBA of the
logical record whose relative record number U = the first record) is in
register BC upon entry. If the new NEXT is in the same sector as the old
NEXT, the status of the current sector is not changed (i.e., the sector is
not written to disk if bit 4 of the FCB 2nd byte equals 1). If the new NEXT
is not in the same sector as the old NEXT, then (1) if bit 4 of the FCB 2nd
byte equals 1, the old sector is written back to disk, and (2) bit 5 of the
FCB 2nd byte is set to 1 to indicate that new sector has not yet been read
into the buffer.

3.24. 4445H Position FCB back one record
Conditions and performance are the same as 4442H except that the NEXT field
is reduced by the LRECL.

3.25. 4448H Position FCB to EOF
Conditions and performance are the same as 4442H except that the NEXT field
is set equal to the EOF field.

DOS ROUTINES 3-10

3.26. 444BH Allocate file space

Conditions 3.1.A, B and C hold. If the file sector represented by the two
high order bytes of the FCB's NEXT field is not already allocated to the
file, the granule containing it is allocated along with the granules for any
lower sectors for the file that are not yet allocated. This allows the
programmer to allocate file space before it is actually needed, and is
especially valuable when it is necessary to know that a sector can be written
before any data is placed in the buffer. If a file's size can be
predetermined before being written (such as is done in COPY), pre-allocating
the necessary granules saves considerable time over allocating the granules
as the file write proceeds.

This address is defined differently in TRSDOS.

3.27. 444EH Position FCB to the specified RBA
Conditions and performance are the same as for the 4442H call except the new
NEXT position value is taken from the registers H, L and C where H contains
the high order and C the low order values.

This address is defined differently in TRSDOS.

3.28. 4451H Write the EOF value from the FCB to the directory
Conditions 3.1.A, B and C hold. If the EOF value in the FCB differs from that
in the file's FPDE, the FCB's EOF value is written into the FPDE on disk.

This address is defined differently in TRSDOS.

3.29. 445BH Select and power up the specified drive
Conditions 3.1.A and B hold. On entry, register A contains a drive number.
That drive becomes the current drive, is selected and, if necessary, powered
up.

3.30. 445EH Test for mounted diskette
Conditions and performances is the same as for 445BH excepting that, in
addition, the drive is tested to determine if a diskette is mounted and is
rotating. If this rotation test fails, error code 08, DEVICE NOT AVAILABLE,
is returned.

3.31. 4461H *Name routine enqueue
Register HL points to a user routine in main memory to be chained in the
chain of user logical routines. The first 12 bytes of the routine are defined
as follows:

DOS ROUTINES3-11

4 bytes reserved for use by DOS only.

8 byte logical routine name field containing the 1 - 8 character name of
the routine, padded on the right with blanks.

If a routine with the same name already exists in the queue, FILE ALREADY
EXISTS error code is returned with NZ set. Otherwise, the routine is
enqueued, and exit taken with Z state set. HL, DE, BC and AF are altered by
this function. This function is new with NEWDOS/80.

Subsequently, whenever a DOS command of the form *name1 or *name1,parameters
is executed, DOS searches its queue for a routine named name1, sets HL point-
ing to the parameters, if any, and jumps to the routine's 13th byte. When the
routine concludes, it should exit via 402DH, 4409H, or 4030H. The routine may
use all registers, and can use the two bytes at 4403H - 4404H to receive or
pass back a parameter. If the logical routine name1 does not exist in the
queue, FILE NOT IN DIRECTORY error code is returned with NZ set.

3.32. 4464H *name routine dequeue
HL points to a logical routine as defined in section 3.31. If the routine is
not in DOS's logical routine queue, this function exits with FILE NOT IN
DIRECTORY error code in register A and with NZ set. Otherwise, the routine is
dequeued, meaning that subsequent *name1 commands naming it will abort,
displaying FILE NOT IN DIRECTORY. Registers HL, DE, BC and AF are altered by
this function. This function is new with NEWDOS/80.

3.33. 4467H Send message to the display
Condition 3.1.A holds. The message bytes pointed to by HL up to and including
a 0DH byte SOL) or up to but not including a 03H byte (EOM) are sent to the
display.

3.34. 446AH Send message to the printer
The same as 4467H except the message is sent to the printer.

3.35. 446DH Convert clock time to HH:HM:SS character format
The current clock value at Model I locations 4041H - 4043H (Model III
locations 4217H - 4219H) is converted to HH:MM:SS character format and stored
in the 8 bytes pointed to by HL. Registers AF, BC, DE and HL are altered. On
exit, HL points to the next byte after the HH:MM:SS field.

3.36. 4470H Convert the date to MM/DD/YY character format
This routine is the same as 446DH, except the date value at Model I locations
4044H - 4046H (Model III locations 421AH - 421CH) is converted to MM/DD/YY
format.

DOS ROUTINES 3-12

3.37. 4473H Insert default name extension into filespec

If the filespec pointed to by register DE has no name extension, insert the 3
characters pointed to by HL as its name extension. The resulting filespec
cannot exceed 31 characters. Registers AF and HL are altered.

3.38. 0013H Read a byte from a disk file
This is DOS's single byte read routine even though it starts in ROM.
Conditions 3.1.A, B and C hold. If the disk sector containing the NEXT byte
of the file is not in the FCB's buffer, it is read into there. The byte is
then placed into register A for use by the caller. The FCB's NEXT field is
incremented.

3.39. 001BH Write a byte to a disk file
This is DOS's single byte write routine, even though it starts in ROM.
Conditions 3.1.A, B and C hold. If the disk sector corresponding to the FCB's
NEXT position is not in the FCB's buffer, it is read into the buffer, unless
NEXT is on a sector boundary and is equal to EOF. The byte in register A on
entry is placed into the buffer, and NEXT is incremented. If the buffer is
now full, the sector is written to disk as if a 443CH call.

3.40. 447BH Model III only (performs as Model I 4410H)
For Model III only, performs the same function as call 4410H does for the
Model I (see section 3.8). For the Model III, 4410H must not be used.

DOS FEATURES4-1

4. DOS FEATURES

This chapter discusses DEBUG, MINI-DOS, CHAINING, DOS-CALL, JKL and
asynchronous execution. DEBUG, DOS-CALL and asynchronous execution are
primarily of interest to machine language programmers and those interested in
Z-80 code. Other users should make a quick reading of DEBUG and DOS-CALL as
they are frequently referred to elsewhere in the manual. MINI-DOS and JKL can
be used immediately by everyone. CHAINING can be very complex; novice users
will want to test out the chaining concept by using the BASIC program
CHAINBLD/BAS to first inspect the sample chain file CHAINTST/JCL and then to
create some elementary chain files.

4.1. DEBUG Facility

As an aid primarily for the machine language programmer but also for use by
higher level language programmers, NEWDOS/80 has the DEBUG facility for
interrupting current execution, inspecting memory, altering memory,
inspecting disk, altering disk, single step execution, etc.

DEBUG can be entered in three ways:

1. Simultaneously depressing the three keyboard keys 1, 2 and 3. In order
for this 123 action to work the follow conditions must be met.

1. SYSTEM option AB = N.
2. SYSTEM option AE = Y.
3. Either (1) interrupts are enabled or (2) the main program is
awaiting keyboard input via the standard keyboard input routine and
SYSTEM option AJ = N.
4. DOS must not be currently using its overlay area (main memory
locations 4D00H - 51FFH.
5. DOS must not have its overlay inhibit enabled.

1. Executing either a RST 30H or a JP 440DH or a CALL 440DH Z-80
instruction.

2. Automatically at, but before, a machine code program commences
execution if DEBUG has been turned on via DOS command DEBUG (see section
2.17).

Upon entry, the DEBUG facility will (1) save all registers in the interrupted
program's stack, (2) use the next stack locations for its own operations, (3)
disable any stops that may have been set on its last exit, (4) display memory
using mode and locations as remembered from its last exit, and (5) display
the cursor in the lower right hand corner of the display to indicate that the
DEBUG facility is awaiting an input command.

All commands, even the single character commands, to the DEBUG facility must
terminate with ENTER. If an error is made in keying in a command but before
ENTER is depressed, simply backspace over the incorrect characters and type

DOS FEATURES 4-2

in the correct ones. If desired, the command may be purged before ENTER by
keying shift left arrow.

Both the X and S displays display memory 16 bytes per display line, both in
hexadecimal and in character format. If SYSTEM option AI = Y, character for-
mats will include lower case letters.

When DEBUG encounters an error condition, it displays 'ERROR' and waits for
the user to acknowledge the error which is done by pressing ENTER to clear
the error state.

The DEBUG facility commands are as follows. Wherever numeric values are used,
they are always hexadecimal values without the suffixed H unless otherwise
specified.

X The DEBUG facility shifts to X display mode, if not already
there. The X display contains 15 lines. The 1st through 4th lines contain
the 1st 64 byte memory area display. The 5th line displays the
interrupted/ replaced contents of Z-80 registers AF, BC, DE and HL. The
6th through 9th lines contain the 2nd 64 byte memory area display. The
10th line contains the interrupted/replaced contents of Z-80 registers
AF', BC', DE' and HL'. The 11th through 14th lines contain the Ad 64 byte
memory area display. The 15th line contains the interrupted/replaced
contents of Z-80 registers PC, SP, IX and IY. The displays for registers
AF and AF' also include a bit mask for the associated F register, with an
alphabetic character if the bit equals 1 (state set) and a - if the bit
equals (state not set). The meanings of the bits (7 - 0) are:

7. S = minus sign
6. Z = zero
5. 1 = unused bit
4. H = half-carry
3. 1 = unused bit
2. P = even parity or overflow
1. N = subtraction
0. C = carry

Using the X display allows the user to track the registers and three sep-
arate memory areas at one time.

S The DEBUG facility shifts to S display mode, if not already
there, using X display's 1st memory area's base address rounded down to a
256 byte page boundary as the S display's base address. The S display
displays 256 bytes of memory, using 16 display lines.

[n]Daddr1 If in S display mode, the 256 byte block containing addr1 is
displayed; if n is specified, the base address of the specified area is
changed, but the display won't change since DEBUG is in the S display
mode. If in the X display mode, addr1 becomes the base address for the
specified area: 1 if n not specified, 2 if n equals 2, and 3 if n equals
3. Examples:

1. D7080 displays the contents of locations 7000H - 70FFH if
DEBUG is in S display mode. If in X display mode, display area 1
will display the contents of locations 7080H - 70BFH.

DOS FEATURES4-3

2. 3DFFC0 If DEBUG is in X display mode, display area 3 will
display the contents of locations FFC0H - FFFFH. If in S mode,
the new area 3 address is remembered, but the display is not
changed.

[n]; If in S display mode and n not specified, the S display is ad-
vanced to the next 256 byte block. If in X display mode, the specified 64
byte display area is advanced 64 bytes: area 1 if n not specified, area 2
if n equals 2, and area 3 if n equals 3.

[n]- If in S display mode and n not specified, the S display is re-
tarded to the next lower 256 byte block. If in X display mode, the spec-
ified 64 byte display area is retarded 64 bytes: area 1 if not specified,
area 2 if n equals 2 and area 3 if n equals 3.

Haddr1 The DEBUG facility shifts to S display mode, if not already
there, displays the 256 byte block containing addrl, enters modify mode
and displays a blinking cursor over the hex digit next to be changed.
Pressing a key 0 - 9 or A - F causes that hex digit to be replaced in
memory and the cursor advanced one position. Pressing right arrow or
space advances the cursor one position without memory change. Pressing
left arrow retards the cursor one position without memory change. Pres-
sing shift left arrow retards the cursor 4 hex digits without memory
change, and pressing shift right arrow advances the cursor 4 hex digits
without memory change. Pressing up arrow moves the cursor up one display
line without memory change, and pressing down arrow moves the cursor down
one line without memory change. The cursor cannot be advanced or retarded
outside the current 256 byte page. Pressing ENTER terminates modify mode.
Any other key terminates modify mode and raises ERROR state. Example:

M6314 DEBUG is shifted to S mode, if not already there. The con-
tents of 6300H - 63FFH are displayed, and a blinking cursor is
displayed over the first hexadecimal digit of byte 6314H. The
operator may now key in replacement hexadecimal digits and/or
move the cursor around within the displayed 256 byte page.

F[addr1][,hb1][,hb2][,hb3][,hb4] Starting at main memory location
addr1, find an occurrence of the specified series of hexadecimal bytes.
hb1, hb2, hb3 and hb4 are each 2 hex digits representing a hexadecimal
byte. If any of hb1, hb2, hb3 or hb4 are specified, addr1 must also be
specified. If none of hb1, hb2, hb3 or hb4 is specified, then the series
of hexadecimal bytes last used by an F command is used. If addr1 is not
specified, then the memory location +1 of the last F command match is
used, thus allowing the user to find successive occurrences of the initi-
ally specified byte string. Main memory is searched for an occurrence of
the search string of bytes. If found, the address of the first of the
matching bytes less 20H is made-the X display's 1st area's base address.
This causes the matching byte string to appear at the start of line 3 of
the X display. If not found, X display's 1st area's base address is set =
0FFE0H. Example:

F5200,CD,24,44 will start at main memory location 5200H and
search for the first occurrence of the three bytes mentioned.
Subsequently, the command F will search for the next occurrence
of the same three bytes.

DOS FEATURES 4-4

If a match takes places in the current stack area, it is possible that
the matching bytes will be gone from the stack before they can be
displayed, thus causing the user to think DEBUG has stopped erroneously.
Further, DEBUG stores the comparison copy of the bytes in the 51xxH
region of memory; so if that area is searched, a match will be found upon
the compare bytes themselves.

I Execute the interrupted program's current instruction and then
re-enter the DEBUG facility. This allows the user to single step execute
the interrupted program. The user may then observe the changes (or havoc)
wrought by each instruction. Single stepping has some pitfalls however:

1. A full timer interrupt sequence may also execute during the
single step.

2. Single stepping is not allowed if the instruction location is
less than 5200H or jumps to or returns to a location less than
5200H.

3. The DEBUG facility uses the Z-80 instruction RST 30H to trap
for the return to DEBUG after the single instruction has been
executed. Therefore, the single stepped instruction should not
branch upon itself and should not refer to the next byte
following itself as the source or destination of data.

C Performs identical to I except that if the single stepped
instruction is a CALL, the entire called routine is executed during the
so called single step.

Rdreg,value1 Replaces the interrupted contents of double register dreg
with the value value1. Examples:

RDE,C000 replaces the previous contents of register DE with the
hexadecimal value C000.

RHL',7100 replaces the previous contents of register HL' with the
hexadecimal value 7100.

Ldn1,drs1 Relative sector drs1 of the diskette mounted on drive dn1
is read into DOS's system sector buffer (Model I locations 4200H - 42FFH;
Model III locations 4300H-43FFH). DEBUG then shifts into S mode and
displays the sector's contents in that buffer. drs1 is a decimal (yes,
decimal) value. The user is responsible for providing correct values for
dn1 and drsl as DEBUG makes no checks. Once the sector's contents are in
the buffer, the user may treat those bytes as normal main memory, may
search them using the F command and may alter them by using the M
command. However, altering the sector in the buffer does not alter it on
the diskette; the WR command must be executed to store the sector back
onto the diskette. Since almost all NEWDOS/80 system programs use the
system sector buffer for their diskette reads and writes, the user should
not use the L or WR commands if the interrupt took place in DOS (in this
case the interrupt address is usually below 5200H but be careful of COPY,
FORMAT, etc.) and he/she intends to continue the interrupted program's
execution.
Warning!!! If passwords are enabled, commands L and WR will be rejected
and ERROR state entered. Example:

DOS FEATURES4-5

L1,150 loads the 151st sector of the diskette currently mounted
on drive 1 into the system sector buffer.

WRdnl,dra1 The contents of the system sector buffer (4200H-42FFH on
the Model I; 4300H-43FFH on the Model III) are written to relative sector
drs1 of the diskette mounted on drive dn1. The parameter definitions and
restrictions in the use of command L also apply to command WR. If the
specified diskette sector is read protected, it is written read
protected.
Warning!!! If you specify the wrong values for dn1 and drs1, you will
write the buffer's data to the wrong sector and create for yourself a lot
of trouble. Be sure you know what you are doing!!! Example:

WR1,150 writes the current contents of the system sector buffer
to the 151st sector of the diskette currently mounted on drive 1.

Q Exit DEBUG to DOS READY. The previous program is forgotten. If
the system was in DOS-CALL or MINI-DOS, that state is purged.

G[addr1][,addr2][,addr3] Restore the registers and resume program
execution. If addr1 is specified, execution resumes at that location;
otherwise it resumes at the memory address specified in the PC register.
If addr2 is specified, a breakpoint is set for that location by replacing
the byte at that location with the single byte Z-80 instruction RST 30H
which when executed will cause the DEBUG facility to be reentered. The
replaced byte is not lost (it is restored upon DEBUG re-entry), but it is
unavailable during the period from DEBUG exit until DEBUG entry. Addr3 is
a 2nd breakpoint address. When addr2 is specified, it is not required
that addr1 be specified. Addr2 and addr3 must not be less than 5200H.
Examples:

G7000,8400,8425 will set a breakpoint at main memory locations
8400H and 8425H, and will restore the registers and commence
program execution at main memory location 7000H.

G will restore the registers and commence program execution
at the main memory location saved in the PC register. If the
interrupted program was awaiting input (such as DOS READY or
BASIC READY) at the time of interrupt, it is still awaiting
input. Even though no cursor is re-displayed (as DEBUG does not
remember the cursor state), the user may proceed with key input.

4.2. MINI-DOS

There are many times when, during the execution of a main program, the
operator would like to interrupt the main program, execute one or more of the
DOS library commands and then resume main program execution without any
change having occurred to the main program's state during the interruption.
NEWDOS/80 provides such a facility, called MINI-DOS.

In order to use MINI-DOS the following conditions must be met:

DOS FEATURES 4-6

1. SYSTEM option AB = N.
2. SYSTEM option AF = Y.
3. Either (1) interrupts are enabled or (2) the main program is awaiting
keyboard input via the standard keyboard input routine and SYSTEM option
AJ = Y.

With these conditions satisfied, the simultaneous depression of the keys D, F
and G will cause the main program to be interrupted, its register state
saved, and MINI-DOS state to be entered. MINI-NEWDOS/80 READY will be
displayed. CAUTION, pressing DFG is not recommended while disk I/O is in
progress as a fatal error to the diskette is possible; if exit from MINI-DOS
is via MDBORT, then there's no problem.

From MINI-DOS state, the operator may execute any of the DOS library commands
except APPEND, CHAIN, COPY and FORMAT. Non-library commands or programs may
not be executed under MINI-DOS.

When ready to return to the main program, enter the DOS library command
MDRET. If the cursor was displayed before DFG, it will be redisplayed. The
main program's register state is restored, and the main program resumes its
execution. If the main program was awaiting keyboard record input and a
partial record was already inputted, that partial record is still in the
buffer even though it is not displayed. If the main program was awaiting
keyboard input, whether or not any characters had been entered, upon exit
from MINI-DOS, the main program is still waiting. Don't be timid; start
keying. If the main program was not awaiting keyboard input, it will go on
about its business.

If the main program is not to be resumed, entering the DOS library command
MDBORT will terminate both MINI-DOS and the main program, with the system
going to normal DOS READY.

Though COPY may not be used under MINI-DOS, simple file copies can be done
using DOS library command MDCOPY.

NEWDOS/80 is unable to eliminate all cases where the triple key depression
results in one or more of the keys being transmitted as input to the main
program. This is especially so when system option AJ = N. These spurious keys
usually show up on exit from MINI-DOS. The user should back space over them,
and should not use triple key depression when the main program is in text
overwrite mode.

As an example of MINI-DOS use, start at DOS READY and execute the following:

BASIC
10 PRINT "HELLO": GOTO 10
RUN

The BASIC program is now in an endless loop printing the word HELLO on
the display. Simultaneously press the D, F and G keys. The BASIC
program's execution is interrupted, and the message MINI-NEWDOS/80
READY appears on the display. Now execute the following DOS commands:

DOS FEATURES4-7

DIR 0
FREE
CLOCK
CLOCK,N
LIB
SYSTEM,0
PDRIVE,0
MDRET

The MDRET command caused the exit from MINI-DOS, and the BASIC program
continued execution where it was interrupted. Now, while we have a test
program executing, let's try out the entry to DEBUG. Simultaneously
depress the 1, 2 and 3 keys. Once again, the BASIC program's execution is
interrupted. The DEBUG routine is now active, and the display is loaded
with either the X or the S DEBUG display format. Now type in G followed
by ENTER. DEBUG is exited, and the BASIC program continues execution.
Now, press DFG again to get back into MINI-DOS. Once there, execute DOS
command MDBORT. This causes DOS to forget about the interrupted program,
to exit MINI-DOS and go to normal DOS READY.

4.3. CHAINING

The DOS commands CHAIN and DO are simply different spellings of the same com-
mand; therefore, in this section, only the command word CHAIN will be used
where in reality either one can be used.

For most TRS-80 users there are functions which use the same series of DOS
commands and/or program responses, and for each of these functions it would
save a lot of key stroking, operator time and errors if this keyboard
character sequence could be saved in a disk file to be called upon when the
operator wishes to execute a specific function.

For example, suppose that each time a reset/power-on is done, the
operator keys in the following commands and program responses:

HIMEM,0E800H Execute DOS command HIMEM
PROGRAM1 Execute program named PROGRAM1
Y Response to PROGRAM1's 1st query.
50 Response to PROGRAM1's 2nd query.
PROGRAM2 Upon PROGRAM'S completion, execute

program PROGRAM2
1 Response to PROGRAM2's 1st query
WORKF1 Response to PROGRAM2's 2nd query
WORKF2 Response to PROGRAM2's 3rd query
BASIC,RUN"BASPGM1/BAS" Upon PROGRAM2's completion, enter BASIC

and run BASIC program BASPGM1.
Y Response to BASPGM1's 1st query.

Subsequent input to BASPGM1 is assumed to vary from run to run, is therefore
not part of the standard sequence and of no concern here. What is of concern
is that this same sequence of keyboard input must be keyed in each time.

DOS FEATURES 4-8

However, if this keyboard character sequence was placed in a disk file
named, for example, XXX/JCL, then this keyboard input sequence can be
triggered to occur by executing the DOS command:

CHAIN,XXX/JCL

The execution of this CHAIN command (see section 2.9) causes keyboard
input to come from the file XXX/JCL, starting at the file beginning and
transmitting characters as keyboard input when requested by DOS or the
executing program. The characters are transmitted upon request until the
end of the file is reached, at which time keyboard input is switched back
to the normal keyboard. Thus, having keyed in the CHAIN command, the
operator may sit back and wait until after BASPGM1 has received its first
response instead of having to key in the various commands and responses
as needed.

Further, since this keyboard sequence is to be invoked at reset/power-on,
the operator may avoid even the keying in of the CHAIN command by setting
that command up beforehand as the AUTO command (see section 2.4). This is
done by executing the DOS command:

AUTO,CHAIN,XXX/JCL

Now, when reset/power-on is done, the CHAIN command is automatically
executed, and the operator has nothing to do until after program BASPGM1
has received its first response.

Both this process of causing keyboard input to be taken from a disk file and
the associated operational mode that NEWDOS/80 is in during that time is
called chaining. The files that contain the keyboard character sequences are
called chain files.

NEWDOS/80 is not concerned with the creation of chain files; NEWDOS/80 only
uses them in response to a CHAIN command (see section 2.9). It is up to the
user to decide what keyboard character sequence is to be contained in a chain
file, and it is left to the user to build the chain files he/she needs.
Probably the simplest way is to use either SCRIPSIT or PENCIL and store the
resulting file in ASCII mode. For users that do not have either SCRIPSIT or
PENCIL, a BASIC program named CHAINBLD/BAS has been included on the NEWDOS/80
diskette to create and edit simple chain files. To build chain files having
other than printable keyboard characters, some other chain file build program
must be used.

Chain file creators must remember that, except for any /./ type chaining
control records (discussed below), the chain file must contain exactly the
keyboard character sequence that DOS or the current executing program
expects. Chaining does not guess for you.

During the processing of a chain file, NEWDOS/80 operates in one of two
modes, depending upon the setting of SYSTEM option AT.

If SYSTEM option AT = Y, then all requests for keyboard input via the
standard keyboard routine are honored from the chain file. This applies
to both a request for a record (such as INPUT or LINEINPUT in BASIC) and
for a single character (such as INKEY$ in BASIC).

DOS FEATURES4-9

If SYSTEM option AT = N, then only requests for full records (such as
INPUT or LINEINPUT in BASIC) via the standard keyboard routine at ROM
location 0040H are honored from the chain file. Requests for a single
byte (such as INKEY$ in BASIC) are honored from the keyboard.

On the NEWDOS/80 Version 2 diskette the user has been provided with (1) the
BASIC program CHAINBLD/BAS with which the user can build simple chain files
and (2) a sample chain file named CHAINTST/JCL. The instructions for using
CHAINBLD/BAS are given in section 6.6. Here, all we want to do is use
CHAINBLD/BAS to look at the chain file CHAINTST/JCL. With computer at DOS
READY, enter the follow responses:

BASIC RUN "CHAINBLD/BAS:0" start CHAINBLD/BAS executing
2 chooses file load option
CHAINTST/JCL:0 filespec of file to be loaded into memory
L ; list first page of chain file
; list next page of file
U return to edit menu
Q return to main menu
5 exit from the program

At each step, study carefully what is displayed. This chain file contains
a good example of commands, program responses, and chaining control
records. Don't be alarmed at CHAIMBLD's 10 second initialization time.
Once you have carefully studied the chain file, exit back to DOS and
execute the chain file using the DOS command:

CHAIN,CHAINTST:0

Since most chain character sequences are short, usually less than 100
characters, it is a shame to allocate a full granule of 1280 bytes for each
such sequence. Therefore, NEWDOS/80 allows a chain file to be divided into
sections with the keyboard character sequence making up each section preceded
by a section identification record (see /./0 discussion below) excepting that
the first section of a chain file need not have a section ID record. If the
chain file section that is to be accessed by a CHAIN command is preceded by a
section ID record, the CHAIN command must specify the section ID as well as
the file.

During chaining, when either end of file or end of section is encountered,
NEWDOS/80 terminates chaining without notification and sets keyboard input
back to the normal keyboard routine. This also happens if either DOS command
CHNON,N or the chaining /./5N function (see /./ below) is executed. If the
current program was awaiting input, the operator will have no indication of
this change except that all activity will stop. Usually, the operator knows
what will be the first display after chaining terminates; so he/she is ready
for it.

If a DOS recognized error occurs during chaining, chaining will be terminated
with the message CHAINING ABORT displayed to inform the operator.

If the DOS command CHAIN is executed while chaining, chaining simply forgets
the previous file and starts chaining within the new file, which may well be
the same file and section as the previous one. CHAIN commands are not nested,
and there is no RETURN function in chaining.

DOS FEATURES 4-10

DOS-CALL is legal during chaining.

During chaining, there are five ways to alter the sequence of keyboard
characters.

1. The current executing program may decide to execute a CHAIN or CHNON
command via DOS-CALL (CMD"doscmd" in BASIC).

2. A CHAIN command itself may be part of the chain file. However, for the
command to be executed, either DOS must be awaiting its next command or
the current program executing must be clever enough to detect the CHAIN
command record in its normal record processing and execute the CHAIN
command via DOS-CALL (CMD"doscmd" in BASIC).

3. An easier method is by having the chain file contain a /./4 type
chaining control record (discussed below) at the point where the change
of sequence is to occur. Using the /./ allows the chaining sequence to be
changed regardless of whether DOS or a user program is in control and the
sequence change takes place without notification on the display. The
limitation of this type of sequence changes is that chaining cannot shift
to a different file.

4. The DOS command CHNON (see section 2.10) may be part of a chain file.
Remember, DOS must be awaiting its next command. If CHNON,N is specified,
chaining is deactivated (though the chain file is not closed and file
position is remembered for a subsequent CHNON,Y or CHNON,D command), and
keyboard input next comes from the keyboard. If CHNON,Y is specified and
DOS-CALL is active, chaining continues but the current DOS-CALL level is
exited.

5. A /./5 type chaining control record (defined below) may be used in the
chain file instead of DOS command CHNON. The /./5 record function is exe-
cuted even if DOS is not awaiting its next command.

If the CHAIN command is executed via DOS-CALL (CMD"doscmd" in BASIC), the
programmer must remember that DOS remains in DOS-CALL executing DOS commands
from the CHAIN file until either end of file, end of section, command CHNON,N
or command CHNON,Y (see section 2.10) is encountered. Thus, if a program
wishes to activate chaining but wants to process subsequent chain input
itself, then the first characters of that chain file or chain file section
must be either CHNON,Y or CHNON,N.

Chaining has six control records that may be placed within a chain file. Each
of these records must start with either a one character or a 4 character
identification sequence and must end with the EOL (ENTER) character. In
NEWDOS/80 Version 1, only the one character record identification was used;
in Version 2, it is recommended that the four character record identification
be used, as the four characters are all printable and thus visible during
chain file create or edit. The record ID characters are not displayed during
chaining. These control records cause chaining to perform the action
described for each. For each special record defined below, the four character
record ID is given first followed by the alternative one character ID value.

1. /./0 or one byte = 128 (80 hex). This identifies a section ID record,
which must be the first record of a chain section, unless the first
section within a file is to be unnamed. The rest of the record is the

DOS FEATURES4-11

section's ID which is used to match against a CHAIN command's section ID,
if it specifies one, or against the section ID specified in a /./4 chain
control record. Subsequent file characters until EOF or until but not
including the next section ID record are all considered part of this new
section. Example:

/./0XXXXXX identifies subsequent characters as belonging to
chain section XXXXXX.

2. /./1 or one byte = 129 (81 hex). This causes the rest of the record to
be displayed, and then the system waits for the user to press ENTER
before continuing. This is a built in pause function. Example:

/./1MOUNT WORK DISKETTE The message MOUNT WORK DISKETTE is
displayed followed by PRESS "ENTER" WHEN READY TO CONTINUE. DOS then
waits for the ENTER.

3. /./2 or one byte w 130 (82 hex). The rest of the record is bypassed
without further action. This allows the chain file creator/maintainer to
place comment records in the file for documentation without them being
displayed.

4. /./3 or one byte = 131 (83 hex). The rest of the record is displayed,
but no pause is done. This allows the creator/maintainer to display to
the operator what is happening. Example:

/./3PHASE TWO COMPLETED The message PHASE TWO COMPLETED is
displayed. DOS does not wait but instead continues processing chain
file input.

5. /./4 or one byte = 132 (84 hex). The rest of the record is a chain
file section ID of 31 characters or less. The current chain file is
searched for a chain section whose section ID matches that specified in
the /./4 record. When found, chaining continues with the first character
of. that section. If the section is not found, END OF FILE ENCOUNTERED
error is displayed and chaining is aborted. Example:

/./4xxxxxx Sequential chain character processing shifts within
the current chain file to the chain section named XXXXXX (see /./0
example above).

6. /./5 or the one byte = 133 (85 hex). The rest of the record is either
the character Y, N or D. Using this one character parameter, a CHNON
function is performed. The advantage of using the /./5 function rather
than an actual CHNON command is that DOS does not have to be waiting for
its next command. The disadvantage is that the chaining state change is
more subtle. The /./5 function is not for the novice. Examples:

1. /./5N chaining is deactivated though the file is not closed.
2. /./5Y chaining remains active but the current DOS-CALL level, if
any, is exited.

DOS FEATURES 4-12

The novice chain file creator will find it easiest to use none of the
chaining control records described above. As experience is gained, try using
the /./3 record to display a comment and the /./1 record to display a message
and wait for ENTER. Next, try using /./0 records to divide a chain file into
sections and then the /./4 record to cause chaining to branch around within a
chain file.

The chain file creator/maintainer is responsible for assuring that chaining
does not create impossible situations for the system or user programs.

During chaining and if SYSTEM option BC = Y, the operator may terminate
chaining by holding down the up arrow key, or the operator may force a
chaining pause by holding the right arrow key, and may resume chaining by
pressing ENTER.

4.4. DOS-CALL

NEWDOS/80 allows any machine language program to call the DOS routine at
4419H (see section 3.11) to execute a DOS command or user program. This
capability is called DOS-CALL. BASIC uses DOS-CALL to execute the CMD"doscmd"
function.

The calling program builds a DOS command in a buffer and terminates it with a
0DH byte. With HL pointing to the command, the DOS routine at 4419H (see
section 3.11) is called to cause DOS to execute the command after moving it
to its own buffer and converting lower case to upper.

If the DOS-CALL is executing a user program, DOS does not check for conflict
between the calling program and .the called program. It is the responsibility
of both programs to avoid conflicts. An example of a user program executing
under DOS-CALL is the execution of SUPERZAP under BASIC through the
CMD"SUPERZAP" function.

Furthermore, the registers cannot be used to pass parameters back and forth
between the calling and the called programs. On entry to the called program,
however, register HL does point to the command parameters. Also, the two
bytes at 4403H - 4404H may be used to pass a 2 byte parameter back and forth.

A user program activated under DOS-CALL may itself use DOS-CALL (be careful
not to overflow the stack). DOS-CALLS can be nested, with each call
activating a new DOS-CALL level.

Upon return from a DOS-CALL, the calling program must check for three states.
If Carry is set, an error has occurred that has already been displayed. If
the program is to continue execution, then it must decide what to do. If the
program is to terminate, it should exit via a jump to 4030H in case this
program was itself invoked by DOS-CALL, which will cause an exit to the next
higher calling program with C state set.

However, if the returned state is NZ and NC, a DOS error has occurred that
has not yet been displayed and the error code is in the right 6 bits of
register A (bits 6 and 7 equal 0). If the calling program is to continue
operation, it can have the error message displayed by calling 4409H with bit

DOS FEATURES4-13

7 of register A = 1; otherwise it should exit via a jump to 4409H with bit 7
of register A = A This latter action will cause the error message to be
displayed and the system goes to DOS READY unless the calling program was
itself invoked by DOS-CALL, in which case the error msg will not be displayed
and an exit will be taken to the next higher calling program with register A
unchanged and NC and NZ states set.

If the returned state is NC and Z, then the called function completed
normally. Since all registers except AF are saved at DOS-CALL entry and
restored at DOSCALL exit, the only way a parameter may be passed back is by
using the two bytes at 4403H and 4404H (17411 and 17412 decimal). Actually,
the higher unused bytes of the DOS command buffer, 4318H - 4367H, can be used
for communication each way in DOS-CALL, but the programmer must understand
that DOS moves all commands into that buffer before executing them.

4.5. JKL

NEWDOS/80 has a small routine for dumping the contents of the display screen
to the printer. This feature allows the operator to print information that
would otherwise be lost as soon as the display is used for something else.

1. In order to use JKL, the following conditions must be met.
2. System option AD = Y.
3. Either (1) interrupts are enabled or (2) the main program is awaiting
keyboard input via the standard keyboard input routine and system option
AJ = Y.
4. DOS must not be currently using its overlay area (main memory
locations 4DOOH - 51FFH).
5. DOS must not have its overlay inhibit enabled.

With these conditions met, the simultaneous depression of the keys J, K and L
will cause the main program to be interrupted, its state saved, and the con-
tents of the display dumped to the printer without any editing except that
implied by SYSTEM option AX. If the printer is not ready or drops ready, the
system will loop waiting for it and no message will be displayed to the
operator.

JKL will substitute a period for each display character that is non-printable
as defined by SYSTEM option AX.

Pressing the BREAK key will terminate the JKL function, except if the CPU is
hung waiting on the printer.

When the dump is completed, the interrupted program is resumed. The problem
of spurious input characters discussed in section 4.2 exists here as well.

In earlier versions of NEWDOS, the JKL routine was always resident in main
memory. In Version 2, the JKL routine was very reluctantly moved into a
system overlay program, thus making it unusable in certain circumstances
where it was usable before. For example, JKL can not be invoked from DEBUG.

DOS FEATURES 4-14

4.6. Asynchronous Execution

NEWDOS/80, like TRSDOS, allows for a very limited form of asynchronous exe-
cution. This is accomplished by inserting a user interrupt routine into DOS's
25ms interrupt chain. The DOS routine (see section 3.8) at Model I location
4410H (Model III location 447BH) must be used to insert the routine into the
chain, and the DOS routine 4413H (see section 3.9) must be used to take the
routine out of the chain. Refer to these two sections for the required format
of the user interrupt routine and how it is invoked.

Again, the user is reminded that the use of user interrupt routines under
NEWDOS/80 is incompatible with that under TRSDOS.

DOS MODULES5-1

5. DOS MODULES, DATA STRUCTURES, AHD MISCELLANEOUS INFORMATION

This chapter gives information about the modules on the NEWDOS/80 diskette,
about diskette directories and about File Control Blocks. The novice user
should read sections 5.1 and 5.4 and leave the other sections for another
time.

5.1. Files required on each diskette used with NEWDOS/80

DIR/SYS 2 - 6 granules. Diskette directory. This file is required
on every diskette used with NEWDOS/80 as it contains the control informa-
tion about all files on the diskette. FORMAT or the format part of COPY
creates this file automatically, and DOS updates this file as necessary
to add, alter, or delete control information about files on that
diskette. The structure of the directory is given in section 5.6. Also
see section 5.6.2 for correction to HIT sector code for DIR/SYS.

BOOT/SYS 1 granule. Must occupy the first granule of every
diskette. On data diskettes this file serves only to reject an attempt to
boot using this diskette in drive 0. On system diskettes, the first
sector contains the machine code for loading the DOS system from the
drive 0 diskette when a power on, reset or jump to location 0 occurs. On
NEWDOS/80 system diskettes, the 2nd sector is a duplicate of the first
(required for booting on the Model III), and the 3rd sector contains
system control information set up by the DOS commands SYSTEM and PDRIVE.
FORMAT or the format part of COPY creates this file automatically.

5.2. NEWDOS/80 DOS System Modules

The DOS system consists of 14 program modules which execute from three areas.
The resident module SYS0/SYS resides in all the non-data areas from 4000H to
4CFFH. The modules SYS1/SYS through SYS5/SYS, SYS7/SYS through SYS9/SYS and
SYS14/SYS through SYS17/SYS all share the DOS overlay area 4D00H - 51FFH
(only one module at a time can be in that area). SYS6/SYS executes from both
the overlay area and the 5200H - 6FFFH area.

SYS0/SYS 3 granules. DOS's resident module loaded by the
bootstrap routine and remains permanently in main memory, except for the
DOS initialization routines in the overlay area which are overlaid- when
no longer needed. SYS0/SYS handles DOS initialization, disk I/O, clock
interrupts, load of other system modules, keyboard intercept, etc.

SYS1/SYS 1 granule. Interrogates DOS commands.

SYS2/SYS 1 granule. Creates files, opens FCBs, allocates file
space, allocates FDEs, encodes passwords and loads users programs to be
run. Executor for library commands RENAME and LOAD.

DOS MODULES 5-2

SYS3/SYS 1 granule. Closes FCBs, kills files, insert/deletes
entries from 25ms chain. Executor for library commands BLINK, BREAK,
CLOCK, DEBUG, JKL, LCDVR, LC, VERIFY and most of PURGE.

SYS4/SYS 1 granule. Displays DOS error messages.

SYS5/SYS 1 granule. DEBUG facility.

SYS6/SYS 7 granules. Executes in 4D00H - 6FFFH. Executor for
library commands FORMAT, COPY and APPEND.

SYS7/SYS 1 granule. Executor for library commands TIME, DATE,
AUTO, ATTRIB, PROT, DUMP, HIMEM and the 1st part of PURGE, SYSTEM and
PDRIVE.

SYS8/SYS 1 granule. Executor for library commands DIR and
FREE.

SYS9/SYS 1 granule. Executor for library commands BASIC2,
BOOT, CHAIN, CHNON, MDCOPY, PAUSE and STMT. Enqueues and dequeues user
logical routines and routes each invocation (see DOS routines 4461H and
4464H in chapter 3).

SYS14/SYS 1 granule. Executor for CLEAR, CREATE, ERROR, LIST,
PRINT and ROUTE.

SYS15/SYS 1 granule. Executor for FORMS and SETCOM.

SYS16/SYS 1 granule. Executor for most of PDRIVE.

SYS17/SYS 1 granule. Executor for WRDIRP and most of SYSTEM.

5.3. NEWDOS/80 BASIC Modules

NEWDOS/80's Disk BASIC enhancements to the TRS-80's ROM BASIC consists of a
main resident module and 8 overlay modules. The modules SYS10/SYS through
SYS13/SYS and SYS21/SYS execute from DOS's overlay area, 4D00H - 51FFH. The
modules SYS18/SYS through SYS20/SYS execute from BASIC's overlay area, 5200H
-56FFH. A11 of BASIC's modules, except BASIC/CMD, are loaded as needed and
must be on the system diskette when needed.

BASIC/CMD 4 granules. Resident module residing in 5700H and up.
Executes Disk BASIC's functions. This module need not reside on the
system diskette as it may be invoked from a data diskette (like any other
program), and once invoked, it is not needed again until BASIC is next
invoked.

SYS13/SYS 1 granule. Displays BASIC's error messages and
executes 1st part of RENUM. Must be on the system diskette whenever BASIC
is active.

SYS12/SYS 1 granule. Executes BASIC direct command REF. Must
be on the system diskette if REF will be executed.

DOS MODULES5-3

SYS11/SYS 1 granule. Executes BASIC direct command RENUM. Must
be on the system diskette if RENUM will be executed.

SYS10/SYS 1 granule. Executes BASIC statement's GET and PUT,
and must be on the system diskette if either statement is to be executed.

SYS18/SYS 1 granule. BASIC direct statement executor. Must be
on the system diskette whenever BASIC is active.

SYS19/SYS 1 granule. Executor for BASIC statements LOAD, RUN,
MERGE, SAVE and CMD"F"DELETE. Must be on the system diskette whenever
BASIC is active.

SYS20/SYS 1 granule. Executor for a number of disk BASIC
statements and usually is the module resident when BASIC is executing a
program. Must be on the system diskette whenever BASIC is active.

SYS21/SYS 1 granule. Executor for CMD"O" and must be on the.
system diskette if CMD"O" will be executed.

5.4. Other Modules on the NEWDOS/80 diskette

DIRCHECK/CMD A program that checks the directory for errors and list
or prints the directory contents. See section 6.4.

EDTASM/CMD An editor/assembler for Z-80 code-source and object code
from/to disk or tape. See section 6.5.

DISASSEM/CMD A program that disassembles Z-80 machine code. See
section 6.2.

LMOFFSET/CMD A program that reads load modules from disk or tape and
writes them to disk or tape. The program optionally (1) assigns new load
addresses, (2) appends a pre-execution move-program-to-execution-location
appendage and (3) prepares the program to run without DOS. See section
6.3.

SUPERZAP/CMD A program that allows inspection and modification of
either disk or main memory. Disk operations are diskette or file
oriented. See section 6.1.

CHAINTST/JCL A sample chain file created by CHAINBLD/BAS.

CHAINBLD/BAS A BASIC program that creates and edits simple record
oriented chain files for subsequent use via the DOS commands CHAIN or DO.
See section 6.6.

ASPOOL/MAS H. S. Gentry's automatic spooler program as modified by
Apparat for NEWDOS/80. See section 6.7.

DOS MODULES 5-4

5.5. Reduced Sized System.

Reduced sized systems can be created, if passwords are disabled, by COPYING
the full NEWDOS/80 diskette onto a new diskette and then KILLING the unwanted
files. A minimum system to handle open's and close's will consist of 10 gran-
ules (BOOT, DIR, SYS0-SYS4). If the DEBUG facility is to be used (including
BASIC's CMD"D"), add SYS5. Section 5.2 indicates which additional modules
must be added for the various DOS library commands. If BASIC is to be used,
section 5.3 indicates which BASIC modules must be added, and section 5.2
indicates which DOS modules must be added if DOS library commands are to be
executed via BASIC's CMD"xx" statement.

If the system module loader finds the module's directory entry inactive or
encounters an error during loading, then one of the following occurs:

If SYS4 is an active module in the system, then SYSTEM PROGRAM NOT
FOUND error will be displayed via a jump to 4409H.

If the jump to SYS4 via 4409H finds SYS4 not in the system, then the
Z-80 HALT instruction is executed which on the Model I causes reset and
on the Model III stops the computer (the operator must manually press
reset).

Modules included in this category are SYS1/SYS thru SYS21/SYS. If any of
BASIC overlay modules fail load, the user must carefully execute BASIC to
get back the basic program text.

CAUTION!!! Once a system file has been killed from a system diskette, it
cannot be restored by simply copying it from another system diskette. The DOS
system loader requires that system file FPDEs be in specific FDE slots in the
directory and that all of a system file's space be accounted for in the first
extent element. Further, SYS0/SYS must occupy the same granules as it did
before kill, and it is recommended for efficient system operation that all
other system files also occupy the same granules. Once the FPDE has be
properly reconstructed, DOS command COPY can then be used to copy the file's
contents.

5.6. Diskette Directory Structure

For the Model I, NEWDOS/80 and TRSDOS diskettes are interchangeable provided
the NEWDOS/80 diskette's directory consists of only 2 granules (see DDGA
parameter of FORMAT, section 2.22, and COPY, section 2.14), and is set up for
10 sectors/track, 2 granules/lump and 5 sectors/granule operations (5 sectors
per granule is standard for NEWDOS/80). The files on the diskettes may not be
operationally interchangeable between the two systems; system modules, BASIC,
ELECTRIC PENCIL, SCRIPSIT, etc., definitely are not though the files they
manipulate are.

For the Model III, the directories of NEWDOS/80 and TRSDOS diskettes are NOT
compatible; a TRSDOS Model III diskette may not be used directly with
NEWDOS/80 and NEWDOS/80 diskettes may not be used directly with TRSDOS Model
III. If the NEWDOS/80 single density diskette has a directory of Model I
standard position and size, the Model III TRSDOS has a conversion program to

DOS MODULES5-5

copy the data to a Model III diskette. The COPY function of NEWDOS/80,
Version 2, also has a way of copying one, some or all files of a Model III
TRSDOS Version 1.3 or higher diskette to or from a NEWDOS/80 diskette (see
sections 12.1 and 2.14).

NEWDOS/80 makes all FDE's of a diskette, except those for BOOT/SYS and
DIR/SYS, available for use; thus, a 2 granule directory on a newly formatted
data diskette has 62 FDEs available. NEWDOS/80 allows the directory to be
allocated with up to 6 granules during diskette formatting (see DDGA
parameter of PDRIVE, FORMAT and COPY), thereby providing for a maximum of 222
available FDEs.

A diskette's directory always starts on a lump boundary and contains the GAT
sector followed by the HIT sector followed by 8, 13, 18, 23 or 28 FDE
sectors, depending upon the number of 5 sector granules allocated to the
directory (see the DDGA parameter of PDRIVE, FORMAT and COPY). The user is
encouraged to study the directory structure by use of program SUPERZAP (see
section 6.1). The starting lump number of the directory is always contained
as a hexadecimal value in the 3rd byte of each diskette's 1st sector; this
value is used by DOS to find the directory.

5.6.1. The GAT (Granule Allocation Table) Sector

The GAT sector is the first sector in the directory and contains the
following information:

Granule free/allocated table. Each of relative bytes 00H - 5FH
corresponds to a lump and contains the free/allocate status bits for all
of that lump's granules. The number of granules per lump is specified by
the GPL parameter of PDRIVE and is a value between 2 and 8. The lump's
1st granule's bit is bit 0 (counting from the right), the 2nd granule's
bit is bit 1, and so on up to the 8th granule. If the bit equals 0, the
granule is free. If the bit equals 1, the granule is allocated or
non-existent.

Granule existence table. Relative bytes 60H - BFH correspond to relative
bytes 00 - 5FH. If a bit within a byte equals 0, then the corresponding
granule for that lump exists and is usable. If the bit equals 1, the
corresponding granule does not exist, must not be used and the
corresponding bit in 00 - 5FH must equal 1. Actually, though NEWDOS/80
creates these existence bytes during format, it does so only for
compatibility with the old style TRSDOS diskettes (where- in these bytes
were known as lockout bytes). Actually, NEWDOS/80 never sets a granule
non-existent. When necessary, the granule existence table is discarded
altogether to make additional GAT sector bytes available to the granule
free/allocated table.

In order to maximize the amount of diskette space controlled by the GAT
sector, NEWDOS/80 Version 2 allows the free/allocated section of the GAT
to extend through, and thereby replace, the existence (or lockout)
portion of the GAT. In this case, the free/allocated status bytes are GAT
relative bytes 00H through BFH instead of 00H through 5% as discussed
above. This extension is automatically done during format if the number
of lumps for the diskette exceeds 60H (96 decimal).

DOS MODULES 5-6

The diskette's encoded password is in relative bytes CEH - CFH.

The diskette name is in relative bytes D0H - D7H.

The diskette date is in relative bytes D8H - DFH.

If a system diskette, the AUTO command to be used at reset is contained
in relative bytes E0H - FFH. If the first byte of this area is 0DH (EOL),
then no AUTO command exists for this system diskette.

5.6.2. The HIT (Hash code Index Table) Sector

The HIT sector is the 2nd sector in the directory. It serves as an index into
the FPDEs for the diskette's files and also serves to indicate which FDEs are
free and which are in use. If a HIT sector byte equals 0, the corresponding
FDE either doesn't exist or is free. If a HIT sector byte is non-zero, the
corresponding FDE is in use, and if in use as 'a FPDE, the HIT sector byte's
value is a hash code formed from the contents of the FPDE's 6th through 16th
bytes (the name and name extension). Thus, when it is necessary to look up a
file in the directory, the hash code is computed and the HIT sector searched
for a match. If a match is found, the corresponding FDE sector is read and
the corresponding FPDE tested for matching name and name extension. If this
match fails, the HIT sector search is continued.

The relative position of the HIT byte within the HIT sector is exactly equal
to the corresponding FDE's DEC code; for it is by using the DEC code as an
index into the HIT sector that the system knows which HIT byte to set
non-zero when a FDE is allocated and to set to zero when a FDE is freed.

The HIT sector's 32nd byte is used differently in NEWDOS/80 than all the
other HIT sector bytes. This byte contains the count of extra FDE sectors
allocated to the directory; the legal values are 0, 5, 10, 15 and 20. This
value is set up when the diskette is formatted.

On old Model I diskettes the value of the HIT sector byte for DIR/SYS (2nd
byte of the HIT sector) was 2CH which is not the correct value. This
incorrect value causes FILE NOT IN DIRECTORY error to appear when the
directory file itself is being accessed. For such diskettes, use SUPERZAP to
put the correct value of C4H into the HIT sector 2nd byte.

5.6.3. The FDE (File Directory Entry) Sectors.

The rest of the directory's sectors are FDE sectors, with each 256 byte
sector containing eight 32 byte FDEs. A FDE is free if bit 4 of its 1st byte
equals 0 and in use if the bit equals 1. An in-use FDE is a FPDE if bit 7 of
its 1st byte equals 0 and a FXDE if the bit equals 1. When an FDE is freed,
only the 4th bit of the 1st byte is zeroed and the corresponding HIT sector
byte is zeroed. Nothing else is changed. However, the user may zero the
entire 32 bytes of each unused FDE by using the C function of DIRCHECK, thus
obtaining a cleaner looking directory.

DOS MODULES5-7

5.7. FPDE File Primary Directory Entry
Each file, when created, is assigned a directory entry somewhere in the FDE
sectors. This entry contains:

1st byte:

Bit 7 = 0. Indicates FPDE, vice FXDE.
Bit 6 = 1. If a system file.
Bit 5 = 0. Undefined.
Bit 4 = 1. Indicates FDE allocated to a file.
Bit 3 = 1. If the file has the invisible attribute.
Bits 2 - 0. Access level code (see PROT parameter of ATTRIB,
section 2.3).

2 byte:

Bit 7 = 0. The file may be allocated more space when necessary.
Bit 7 = 1 prohibits this. DIR, ATTRIB, CREATE and the DOS file space
allocation routine use this bit.

Bit 6 = 0. The DOS file close function may deallocate any excess
granules above the EOF (i.e., apparently not being used by the file).
Bit 6 = 1 prohibits this. DIR, ATTRIB, CREATE and DOS file close use
this bit.

Bit 5 = 1. At least one sector of the file has been written to,
either new data or updated data, since the last time this bit was
set to 0. DIR, ATTRIB, CREATE, PROT, COPY and the DOS sector write
routine use this bit.

Bits 4 to 0. Undefined and reserved for future definition.

3rd byte = 0. Currently undefined and reserved for future
definition.

4th byte. The lower order byte of the file's EOF. This value is
the EOF position within the EOF sector. See FCB 20th byte below.

5th byte. The logical record length (LRECL) (0 = 256) in bytes.
When a file is created via a 4420H vector call, the value from register B
is stored here. When an existing file is opened, even as a new output
file, this value is not updated. This value is never used in NEWDOS/80.
The value stored in FCB+9 at open time is that from register B, not from
the FPDE.

6th-13th bytes. The file name, padded on right with blanks if
necessary.

14th-16th bytes. The file name extension, padded on right with blanks
as necessary.

17th-18th bytes. The encode of the update password.

19th-20th bytes. The encode of the access password.

21st byte. The middle order byte of the EOF.

DOS MODULES 5-8

22nd byte. The high order byte of the EOF. The 4th, 21st and
22nd bytes are a 3 byte EOF value. This EOF value, instead of being in
RBA format as are the EOF and NEXT fields of the FCB, is maintained in
the old TRSDOS format which has the following rules:

If the lower order byte of the EOF equals 0, the EOF is in RBA
format.

If the lower order EOF byte is not $, then the EOF value in the
FPDE is equal to the actual RBA value plus 255 (the high two
byte value of the EOF is incremented by 1).

NEWDOS/80 maintains the directory FPDE EOF field in this manner
in order to maintain compatibility with the old Model 1 TRSDOS
2.3 diskettes (see section 12.1). New EOF values for a file are
placed into the FPDE only during file-create, write-EOF and DOS
close. Thus, if the system fails requiring reset, the user can
expect that any file open for output at the time of failure will
contain the new data but usually not the new EOF.

See section 12.1 for EOF and NEXT incompatibility with other
DOSs.

23-30th bytes. Four 2 byte pairs (extent elements), each specifying
a contiguous area of the diskette assigned to this file. The format of an
extent element is:

1st byte:

255 (0FFH) means the end of the extent elements for this file.

254 (0FEH) means the next byte contains the DEC for the first or
next FXDE assigned to this file.

0 - 253 (0 - 0FDH) equals the number of the diskette's lump in
which the area starts. Other considerations including the number
of lumps the GAT sector can handle limit this value to the range
0 - 191. This value is also the relative location within the GAT
sector of the byte associated with this lump.

2nd byte (when the 1st byte is less than 254)

left 3 bits equals the number of granules (0-7) from the start
of the lump to the start of the area.

right 5 bits equals the number less one of contiguous granules
assigned to this area.

31-32nd bytes. An extent element whose 1st byte is either 255 or
254.

DOS MODULES5-9

5.8. FXDE File Extended Directory Entry

When a file has more than 4 space areas assigned, the additional extent
elements are contained in FXDE's assigned to the file. The format of a FXDE
is.

1st byte. Bits 7 and 4 are both 1 to indicate a FXDE; all other
bits of the byte equal 0.

2nd byte. The DEC for previous FXDE or FPDE of this file. This
is a backward chain. The previous entry's 31st byte will be 254, and the
32nd byte will contain the DEC of this FXDE.

Bytes 3-22. Unused and should equal

Bytes 23-32. Are as defined for the FPDE.

5.9. FCB File Control Block
Also known as a DCB (Data Control Block)or an DCB (input/output block).

In order that file information be read from or written to a diskette, a link
must be created between that file and the user program. The link is created
by the DOS open function (see sections 3.13 and 3.14) and dissolved by the
DOS close function (see section 3.15). During the time the link is in
existence, the control information for that link is maintained in a 32 byte
area of main memory known as a File Control Block. At open time, the user
specifies where in user memory this FCB is to be. While this link is in
existence, the FCB's area of main memory must not be used for any other
purpose. DOS does not remember where the FCBs are. The user informs DOS of
which FCB to use for each function that is to use a FCB. Thus, the link is
effectively dissolved by simply never using the FCB again in a function call
or by using the FCB in the open of a new link. Remember though, if writing to
a file where the EOF is being changed, either a DOS close or DOS write-EOF
(see section 3.28) function must be done to assure the EOF is properly placed
in the FPDE.

At open time (a call to DOS 4420H or 4424H), the caller provides in register
DE the address of a 32 byte main memory area for use by the system as a FCB
while the file is open. The user must have placed the filespec (terminated by
a 0DH or 03H byte) for the desired file into the FCB's 1st bytes, and the DOS
close function will attempt to put it back there when done. NEWDOS/80 will
accept the Model III TRSDOS 50 bytes area but only uses the first 32 bytes.
While the FCB is open, the format for the 32 byte FCB is:

1st byte:

Bit 7 = 1. The link is in existence (i.e., an open has been
done).

Bit 7 = 0. The link is not in existence (i.e., either an open
has not been done or a close has been subsequently done).

Bits 6-2 = 0. Undefined.

DOS MODULES 5-10

Bit 1 = 1. The value in the FCB's NEXT and EOF fields are RBAs
within the diskette, rather than the file. This allows the user to
I/O directly to diskette sectors, bypassing the file concept
altogether. This bit should never be 1 during byte I/O via the 0013H
or 001BH calls.

Bit 0 = 1. Sectors written to the file are written read
protected in the same manner as DOS writes directory sectors. This
bit should never be 1 during byte I/O via the 0013H or 001BH calls.

2nd byte:

Bit 7 = 1. Either single byte operations or logical record
operations (record length in FCB's 10th byte) are being done via
this FCB. NEXT value is maintained at the next byte to be read or
written. This bit is set to 1 at open time if register B is not 0.
It is also set to 1 whenever byte I/O is done via the 0013H or 001BH
ROM calls.

Bit 7 = 0. Read and write operations are by full 256 byte
sectors with the FCB's NEXT value incremented 256 bytes upon the
completion of each successful I/O.

Bit 6 = 0. The FCB's EOF value is to be set equal to the FCB's
resulting NEXT value on every successful write operation.

Bit 6 = 1. The FCB's EOF value is to be set equal to the FCB's
resulting NEXT value only for those successful write operations
resulting in the NEXT value exceeding the current EOF value.

Bit 5 = 0. The FCB's buffer contains the current file sector's
data. If bit 5 = 1, the buffer does not contain the current file
sector's data; if needed, that sector's data must be read into the
buffer.

Bit 4 = 0. The FCB's buffer does not contain updated data not
yet sent to the file. If bit 4 = 1, the buffer does contain updated
data not yet sent to the file. During DOS close, if this bit is 1,
the sector data in the buffer is automatically written to disk. This
updated data is also written on every 443FH and 4451H call and on
every 4442H, 4445H, 4448H and 444EH call that positions the file
within a different sector.

Bit 3 = 1. This FCB is in the NEWDOS/80 Version 2 format for the
18th - 32nd bytes. This bit is set to 1 by DOS open. If bit 3 = the
FCB is in the old format and is illegal-in NEWDOS/80 Version 2.

Bits 2 - 0. Access level code (see PROT parameter of
ATTRIB, section 2.3).

3rd byte:

Bits 7 - 5. These bits are defined the same as those in the FPDE 2nd
byte (see section 5.7). If bit 5 equals 0, the DOS sector write
routine sets the bit to 1 in both the FCB and the FPDE just before
it actually writes the current sector to disk.

DOS MODULES5-11

Bits 4 - 0. Undefined and reserved for future definition.

4-5th bytes. The main memory address of the FCB's buffer. The user
determines where the buffer is to be and puts this address into register
HL before the call to the DOS open routine. Sectors are read from disk
into this buffer and written to disk from this buffer.

6th byte. The low order byte of the FCB's NEXT field. This is
the relative position within sector value. See discussion for FCB 12th
byte below.

7th byte. The relative number of the drive containing the
diskette containing the file.

8th byte. The DEC code of file's FPDE. After the FCB is opened,
this DEC code is the link between the open FCB and the file's directory
information as the FCB itself no longer contains the filespec.

9th byte. The low order byte of EOF. This is the relative
position within the EOF sector. See discussion of FCB 14th byte below.

10th byte. The logical record length (LRECL) (0 = 256) for
records of this file. This value is supplied in register B by the caller
at open time. If not 0 at open time, bit 7 of the FCB's 2nd byte is set
to 1, and subsequent DOS sector read or write calls must contain, in
register HL, the address of the logical record to be moved to the FCB's
buffer (write) or filled from the FCB's buffer (read).

11th byte. Middle order byte of the NEXT field.

12th byte. High order byte of the NEXT field. The 12th, 11th and
5th bytes form a 3 byte RBA within the file of the next byte to be
processed, either input or output.

For single byte and logical record I/O, DOS maintains the FCB NEXT
field in exact RBA format.

For full sector I/O, DOS also maintains the NEXT field as an exact
RBA, but there are subtle actions by DOS that can give trouble if
the user is not aware of them. DOS does not change the lower order
byte of the NEXT field during full sector I/O. Normally, this byte
is zero, and that's fine. However, the user can set this byte
non-zero or if the previous I/O done was in single byte or logical
record mode the lower order byte will probably be non-zero. The user
must be aware of the following rules:

During full sector reads, all three bytes of NEXT participate
the EOF check just as for single byte and logical record reads.

During full sector write, when the low order byte of the NEXT
field is non-zero, the NEXT field is not advanced 256 bytes upon
the successful completion of the write and EOF, if it is
updated, assumes that non-advanced NEXT value. The rationale
here is that if the NEXT field's lower order byte is zero, the
value of NEXT after the successful write is to be at the first
byte of the next sector, but if the NEXT field's lower order

DOS MODULES 5-12

byte is non-zero, the value of NEXT after the successful write
is to remain within the sector just written.

See section 12.1 for discussion of NEXT and EOF field
incompatibility with other DOSS.

13th byte. Middle byte of the EOF field.

14th byte. The 14th, 13th and 8th bytes form 3 byte RBA within
the file of the end-of-file (the 1st byte beyond the file's last data
byte). This value is initialized from the FPDE at open time, and is
updated at sector, logical record or byte write time under control of the
FCB 2nd byte, bit 6. See section 12.1 for discussion of NEXT and EOF
field incompatibility with other DOSS.

15-22th bytes. Identical to 23-30th bytes of FPDE.

23-24th bytes. For the current FXDE whose 4 extent elements are in
the FCB 25th - 32nd bytes, the number in this field represents the
relative granule number of that FXDE's 1st extent's 1st granule. If that
value equals 0FFFFH, then no FXDE is represented in the 25th-32th bytes.

25-32nd bytes. Identical to 23-30th bytes of the current FXDE, if
any.

Discussion of FCB bytes 17-32:

The definition for FCB bytes 17 to 32 has changed from what it was
in NEWDOS/80 Version l and Model I TRSDOS. It was assumed that very
few user programs ever referred to these bytes as they serve only to
reduce the number of directory accesses done by the resident DOS.
However, some users (such as the old SUPERZAP coded in BASIC) have
made use of the old definitions to get around having to open a file
when diskette, rather than file, I/O was wanted. NEWDOS/80 Versions
1 and 2 have provided a diskette, as opposed to file, I/O method
(see FCB 1st byte, bit 1 definition); that method should be used and
those old pseudo FCB methods MUST be discarded to run with NEWDOS/80
Version 2. Failure to do so could be catastrophic; NEWDOS/80 Version
2 has activated bit 3 of FCB 2nd byte in an attempt to head off
these bad pseudo FCBs.

This change to the FCB 17-32nd bytes allows the FCB to contain all
of a file's extent information for any file having 8 or less extents
(DIR with the A option will display how many extents a file has). If
the file occupies contiguous diskette space, 8 extents is enough for
approximately 300,000 bytes (or 270,000 bytes if the directory is
spanned by the file's space).

If the file has more than 8 extents, meaning that more than one dir-
ectory FXDE is assigned to the file, then the FCB contains space
information for the file's 1st 4 extents and the 1 to 4 extents of
the FXDE last having a sector read or written. It is quite possible
for large randomly accessed files to require a lot more directory
accesses than was done under NEWDOS/80, Version 1.

ADDITIONAL PROGRAMS6-1

6. ADDITIONAL PROGRAMS SUPPLIED OP NEWDOS/80 DISKETTE

6.1. SUPERZAP

Program SUPERZAP/CMD provides the user with the means to read and write
standard 256 byte diskette sectors or any part of main memory, except writing
to ROM. Learning to use SUPERZAP is strongly recommended for all NEWDOS/80
owners. If corrections (known as zaps or patches) are to be made to your
NEWDOS/80, Apparat will distribute them in written form for application using
SUPERZAP. You must know how to us DFS and MODxx. In learning to use SUPERZAP,
do your learning on a diskette having data that you can afford to lose!!!!!

Certain diskettes are written in non-standard sector formats and are thus
inaccessible to SUPERZAP. There exist other programs that read anything that
is on a diskette, but do not have some of the other SUPERZAP features. The
user, at some time, will probably want to buy one of these other programs
from the vendors that sell them.

SUPERZAP operates in both upper and lower case.

Where numeric values are inputted and unless otherwise specified, SUPERZAP
assumes DECIMAL unless the value is suffixed with the character H to indicate
hexadecimal.

6.1.1. Function Modes
The menu displays the functions available. The user keys in the selected
function's characters and then presses ENTER. The SUPERZAP functions are as
follows:

DD Display a Disk sector. SUPERZAP will ask for the drive number
and the number of the relative sector within the diskette, read the
sector and display it.

DM Display a 256 byte page of main memory. SUPERZAP will ask for a
memory address, truncate it to a 256 byte boundary and display the page.

DFS Display a File's Sector. SUPERZAP will ask for the file's file-
spec. Next, SUPERZAP will ask for the relative sector number within the
file and will display that sector.

DTS Display track's sector. SUPERZAP will ask for the drive number,
track number and the number of the relative sector on the track. It will
then read the sector and display it.

DMDB Display Memory Dump Block. SUPERZAP will ask for the filespec
of the memory dump file (created by DUMP, see section 2.20). It will
display the dump's base address. Next it will ask for a main memory
address within the range of the dump, truncate it to a 256 byte boundary
and display the memory page.

VDS Verify Disk Sectors. SUPERZAP will ask if the operator wants a
pause when a read protected sector is encountered. Next, SUPERZAP will
ask for the drive number and the number of the relative sector on the

ADDITIONAL PROGRAMS 6-2

diskette of the 1st sector to be verified. Lastly, it will ask for the
number of sectors to be verified. It will then proceed with the verify
which consists simply of reading each sector within the range specified.
When a protected sector is encountered and if a pause was requested,
SUPERZAP will display the sector's location and wait for the operator to
press ENTER before continuing. VDS is a fast way of finding bad sectors
on a diskette that the user suspects have gone bad. While verifying is
being done, VDS may be cancelled by pressing up-arrow.

ZDS Zero Disk Sectors. SUPERZAP will ask for the drive number and
the number of the relative sector on the diskette of the first sector to
be zeroed. Next, it asks for the number of sectors to be zeroed. The
zeroing is then done. The read protection status of each sector is not
changed.

CDS Copy Disk Sectors. SUPERZAP will ask for the drive number and
the number of the relative sector on the diskette of the source (where
the data is coming from) range's 1st sector. Next, it will ask for the
same data for the destination (where the data is going to) range's 1st
sector. Lastly, it will ask the number of sectors to be copied. The copy
is then done. Destination sectors are each assigned the read protection
status of the corresponding source sector.

CDD Copy Disk Data. This function differs from CDS in that any
string of diskette bytes may be copied. SUPERZAP will ask for the drive
number and the number of the relative sector on the diskette of the
sector containing the source range's 1st byte and then ask for that
byte's offset within the sector. It will ask for the same information for
the destination range's 1st byte. Lastly, it will ask for the number of
bytes (65535 is the maximum allowed) to be copied. The copy is then done.
The read protection status of the destination sectors is not changed.

DPWE Display PassWord Encode. SUPERZAP will ask for the password,
encode it and display the resulting encode in hexadecimal as it would
appear in a directory FPDE.

DNTH Display Name/Type hashcode: SUPERZAP will ask first for the
filename and next for the type (name extension). It will then hash them
and display the resulting hashcode in hexadecimal as it would appear in
the directory HIT sector.

EXIT End SUPERZAP and exit to 440DH (DOS READY).

Since ZDS, CDS and CDD change diskette data, the user is first asked if
he/she is sure this function is wanted, just in case the wrong function was
keyed.

For CDS and CDD, the copy normally proceeds in ascending byte order for both
the source and destination. However, if the highest source byte is within the
destination range, the copy is in descending byte order to avoid destructive
overlap.

All disk I/O's are done through the normal DOS sector I/O routines. Thus, if
an error occurs, system option AM and AW I/O try counts are in effect.

ADDITIONAL PROGRAMS6-3

For VDS, ZDS, CDS and CDD, if a disk I/O error results, the operator will be
offered the choice of retrying, skipping the sector or terminating the
function. In many cases, repeated retrying will eventually work. If the error
sector was a source sector, skip will cause the associated destination bytes
to receive whatever happens to be in the source's buffer; this should be no
problem as the user is faced with a reclaim job anyway.

When SUPERZAP is waiting for a numeric value, keying an X as the value will
cause SUPERZAP to terminate the function and return to the menu. If SUPERZAP
is waiting for a filespec, a null parameter will terminate the function.

When any of DD, DM, DFS, DTS or DMDB is suffixed with ',P', the sectors or
memory pages will be printed as well as displayed. For DD,P, DFS,P or DTS,P,
the user will be asked for the number of sectors to be printed. For DM,P or
DMDB,P the user will be asked for the number of bytes. If the printer is not
ready or drops ready, SUPERZAP will loop waiting on it without operator
notification. Pressing the P key will cause printing to pause; press ENTER to
continue. Pressing the H key will terminate printing.

6.1.2. Display Mode
For DD, DM, DFS, DTS and DMDB, while a sector or memory page is displayed,
SUPERZAP is in the display mode and waits for a display mode command. Except
for the F and L commands, the keyed command bytes are not displayed and do
not require termination with ENTER; the command is executed as soon as all
characters of a display mode command have been keyed. The display mode
commands are:

X The current function is terminated and SUPERZAP returns to the
menu.

g Redisplay the same sector or memory page.

+ or ; Display the next higher sector or memory page.

- Display the next lower sector or memory page.

J Restart the same function.

R Restart the same function, retaining the 1st parameter
unchanged.

SCOPY DD and DTS only. The current sector is to be copied to a
specified sector. SUPERZAP will ask for the destination sector's drive
number and relative sector number. The destination sector may be the same
as the source sector. SUPERZAP will read the destination sector and
report its status. Then the source sector's contents are written to the
destination sector. SCOPY is useful when a sector is found to have bad
parity but, with the exception of a few bytes, is intact; by SCOPYing
upon itself, new parity will be generated, and the sector can then be
repaired. It is also useful for altering a sector's read protect status.

When SUPERZAP is in the display mode, it has a diskette, file, main
memory or memory dump file search capability. The match is on 1 to 4
hexadecimal bytes (without the suffixed H) which are represented by
aa,bb,cc,dd. When the search finds a match, the sector or memory block

ADDITIONAL PROGRAMS 6-4

containing the first byte of the match is displayed with a thin vertical
blinking cursor to mark its position. That cursor will disappear as soon
as a key is depressed; however, the associated 'find' position is
remembered in case the search is to be continued. When SUPERZAP is in
display mode, the following commands to perform searching may be keyed
in, terminated by ENTER.

F,aa,bb,cc,dd The 1 to 4 hexadecimal match bytes are stored,
and the search starts at the first byte of the diskette (if DD or
DTS mode) or file (if DFS or DMDB mode) or main memory (if DM mode).

F, The same as above except the previously established match
bytes are used.

Fxx,aa,bb,cc,dd The 1 to 4 hexadecimal match bytes are stored,
and the search starts within the current sector or block at the xxth
relative byte where xx is a 2 digit hexadecimal number without the
suffixed H.

Fxx or Fxx, The same as above except the previously established
match bytes are used.

F The search continues at the first byte following the
position of the first byte of the last match, and the search uses
the previously established match bytes.

L,aa,bb,cc,dd This command is to be used instead of
F,aa,bb,cc,dd when, in DFS mode, the file being searched is standard
load module (i.e., SUPERZAP/CMD, LMOFFSET/CMD, etc.) and the user
wants SUPERZAP to purge out all except actual object code bytes from
the search. This allows a load module file search for two or more
bytes without the imbedded loader control information interfering
with the match. The resulting display will still contain the loader
control information; the user must be prepared to occasionally see
this control information imbedded within the matching bytes.
Usually, but not always, this control information is 4 bytes long
with the first byte being a hexadecimal 01. Except for purging this
control information from the match, L,aa,bb,cc,dd works the same as
F,aa,bb,cc,dd. The F command may be used to continue an L type
search.

L, The same as above except the previously established match
bytes are used.

MODxx DD, DM, DFS and DTS only. SUPERZAP enters modify mode and posi-
tions the cursor to the first hex digit of relative byte xx (value 00H -
FFH) of the current page or sector.

EXIT End SUPERZAP and exit to 402DH (DOS READY).

If an error occurs during the keying in of a display mode command, the
partial command is ignored and the sector or block is redisplayed again.

6.1.3. Modify Mode
SUPERZAP enters modify mode upon execution of the display mode command MODxx.

ADDITIONAL PROGRAMS6-5

This mode allows the changing of individual bytes within the current disk
sector or memory page. Responses while in modify mode are defined as follows:

Hexadecimal digit character - 9 or A - F. The hex digit at the current
cursor position is replaced by the new hex digit, and the cursor is
advanced one position. If the cursor wraps around, an error will occur if
the next character inputted is a hex digit character. Replacements in a
main memory page are for real while replacements in a sector are buffered
until the sector is written or a 'Q' command cancels the pending update.

Space or right arrow. The cursor is advanced one position.

Left arrow. The cursor is retarded one position.

Shift right arrow. The cursor is advanced 4 positions.

Shift left arrow. The cursor is retarded 4 positions.

Down arrow. The cursor is advanced one display line.

Up arrow. The cursor is retarded one display line.

ZTxx This sequence is displayed vertically in display column 7 and
must terminate with ENTER. All hex digits from and including the cursor
position to and including the 2nd hex digit of relative byte xx are
zeroed. The cursor is left positioned to the 1st hex digit following
relative byte xx, and if wrap around occurs, the next input char may not
be a hex digit.

RTxx,jk This command is similar to ZTxx except that each byte's 1st
digit is replaced with the hex digit j, and each byte's 2nd digit is
replaced with the hex digit k.

Q For sector operations only. Modify mode is terminated, any
changes in the buffer are discarded, and SUPERZAP returns to display
mode.

ENTER For memory page operations, modify mode is terminated, and
SUPERZAP returns to display mode. For sector operations, the operator is
asked if he/she really wants to update the sector now. If not, SUPERZAP
continues in modify mode. If so, the sector (with any changes) is written
back to disk, modify mode is terminated, and SUPERZAP returns to display
mode.

When modify mode encounters an error, it will display 'INVALID MODIFICATION
MODE CHAR. REPLY '*' TO CONTINUE', Upon receiving * , SUPERZAP returns to
modify mode.

6.2. DISASSEM

Program DISASSEM/CMD disassembles Z-80 object code from a standard TRS-80
load module or from main memory. The disassembled code is sent to the display

ADDITIONAL PROGRAMS 6-6

or to the printer. Generated source text may be sent to disk and a location
cross reference may be produced.

Responses to the query 'OBJECT FROM MAIN MEMORY OR DISK?' (M OR D):

1. null or D Object is a disk load module.

1. Respond to the query 'FILESPEC?' with the filespec of the load
module to be disassembled.

2. Respond to the query 'OFFSET OBJECT VIRTUAL ADDRESSES BY? (HEX)'
with either null (meaning 0) or a 1 to 4 digit hexadecimal number
(without suffixed H) which when added to the load addresses within
the load module will give the proper address where the instructions
being disassembled would be during normal execution of that code.
This parameter is needed when an object module loads to one place in
main memory, but actually executes from another. Wraparound is
allowed. Example:

If the object module loads into C000H - FFFFH but is to execute
in 7000H - AFFFH, applying an offset of B000 will cause the
disassembler to disassemble as if the load was actually done to
7000H - AFFFA.

3. Respond to the query 'VIRTUAL RESTART LOCATION? (HEX)' with
either null (meaning start at the file beginning) or a 1 to 4 digit
hexadecimal number (without the suffixed H) which is the listed
location of any instruction of the disassembly. This allows restart
of a large disassembly within the instruction print portion of the
listing, and the location chosen is usually the location value for
the first instruction on the page where printing was interrupted.

2. M The object code is in main memory.

1. Respond to the query 'OBJECT VIRTUAL BASE ADDRESS? (HEX)' with
the 1 to 4 digit hexadecimal location value (without suffixed H)
where the object code is considered to execute from, whether or not
it is actually there now. In the listing, this value will be the
first instruction's printed location value.

2. Respond to the query 'OBJECT REAL BASE ADDRESS (HEX)?' with null
(meaning the real and virtual locations are the same) or with the
1-4 digit hexadecimal main memory location (without suffixed H)
where the disassembler will actually find the object code.

Responses to the query 'ANY OPTIONS?':

1. null No more options to be specified.

2. PTR The output is sent to the printer instead of the display.

3. BFSP Bypass Full Screen Pauses. In normal operation the
disassembler pauses whenever the display screen is full or whenever a
break occurs in the sequential locations of the disassembled file. The
disassembler waits for (1) ENTER to continue, (2) X to terminate the
disassembly or (3) V (object from main memory only) to restart the

ADDITIONAL PROGRAMS6-7

disassembly at a new location. The BFSP option bypasses this pausing,
causing display to occur as fast as the disassembly can proceed. This
option is automatically invoked if option PTR is specified.

The remainder of the options are legal only when the object code is from
disk:

4. NCR The location reference table is not to be built and no
display or listing done of it.

5. NIP Do not print or display the disassembled instructions.

6. STD Source To Disk The disassembled code is to be sent to disk
in the format of an EDTASM source text file. See discussion below.

7. FGN=xxx First Generated Name xxx is the 3 alphabetic character name
of the first name to be assigned during the STP action described below.
The default name is AAA.

8. RTD The location reference table is to be stored onto disk.
After the reference table is built, the program will ask for the
'REFERENCE TABLE FILESPEC?'. Respond with the filespec of the file to
contain the reference table. Reference table files can be used (by a
user-created program) to merge the reference tables of two or more
programs. See below for file format.

9. REA Enable listing of all types of references; this is the
default.

10. RE& Enable list of the specified reference type where '&' is
one of L, P, R, S, T, U, V, W or X. Reference types are defined at the
beginning of each location table listing.

11. RIA Disable list of all types of references.

12. RI& Disable listing of the specified reference type where is
one of L, P, R, S, T, U, V, W or X.

The disassembler operates through four phases:

1. If object code from disk and option NCR not specified, DISASSEM
displays 'BUILDING CROSS REFERENCE TABLE' and passes through the object
code building the location reference table. For a large disassembly this
will take some time. If insufficient main memory for the table, the
disassembly will terminate.

2. If RTD option specified, this phase writes the location reference
table to disk.

3. List disassembled instructions to display or printer. If STD
specified, the resulting text is also written to disk. On the
disassembled instruction print lines, column 1 indicates the number of
references to bytes of the instruction; the value is hexadecimal with
blank meaning and F meaning 15 or more references. Column 2 indicates
which bytes of the instruction have been referenced. If blank and column
1 non-blank, then only the instruction's 1styte is referenced; otherwise

ADDITIONAL PROGRAMS 6-8

the hex digit represents a 4 bit binary mask of which bytes, from the
left, are referenced.

4. If object is from disk and NCR is not specified, the location refer-
ence-table is displayed or printed. The definitions of the reference type
codes are given first. Then, in ascending numeric order, every referenced
location is listed with the location of every referencing instruction.
Suffixed to each referencing location value is the reference type code
for the Z-80 instruction making the reference.

If the disassembler finds something wrong with the object module, either
'DISK OBJECT FILE FORMAT NOT AS EXPECTED' or 'PAST END OF FILE' will be
displayed and the disassembly will terminate.

While the disassembled instructions are being displayed or printed, holding
down P will cause a pause; press ENTER to continue. Holding down X will term-
inate the disassembly. At most other times when DISASSEM is awaiting a user
response, the disassembly may be terminated by holding down up-arrow and
pressing ENTER.

For main memory disassemblies, the operator may shift the disassembly point
at will. When the disassembly is paused, keying V will display the query
'VIRTUAL RESTART LOCATION? (HEX)'. The operator responds a 1 to 4 hexadecimal
digit value, which is the main memory location where the disassembly is to
restart.

If the PTR option is specified and after all options have been specified, the
following occurs:

Respond to the query Q LINES PER PAGE, EXCLUDING TOP AND BOTTOM MARGINS?
(1-255)' with the number of printable lines per page.

Respond to the query '# LINES EACH FOR TOP AND BOTTOM MARGIN? (0-10)'
with the number of lines the disassembler is to skip at both the top and
bottom of each page. If 0, the disassembler does no paging action. What
the disassembler does for top and bottom margins is completely
independent and in addition to anything a printer driver may be doing.

Respond ENTER to the query 'REPLY "ENTER" WHEN PRINTER AT TOP OF PAGE'
when the printer is on and at top of page.

Respond to the query 'HIGH ASCII CODE FOR PRINTER? (5A - 7F)' with the 2
hexadecimal digit value (between 5AH and 7FH) for the highest printer
code for your printer.

The STD option causes the disassembled code to be converted into EDTASM type
source text code. The resulting STD output (if not too large) can be loaded
and assembled by EDTASM. The outputing of source text via the STD option
works as follows:

After the cross reference table build phase and the RTD phase, respond to
the query 'ASSEMBLER SOURCE TEXT OUTPUT FILESPEC?' with the filespec of
the file to contain this generated source code. The file will be opened,
and the generated text sent to it during the main disassembly phase.

ADDITIONAL PROGRAMS6-9

All numeric values within the disassembled code are replaced with a 3
character alphabetic name unique to that value. The names are assigned
arbitrarily in ascending alphabetic order with the first name assigned
either AAA or the name specified by the FGN option.

If a numeric value does correspond to a disassembled location, the name
assigned to that value is placed in the location name field of that
location's instruction when it is sent to disk and displayed or printed.

If a numeric value does not correspond to a disassembled location, an EQU
statement is generated at the end of the source text to equate the name
with the value.

ORG statements are generated as necessary, and the END statement is
generated as the last text statement.

The format of the reference table file created by the RTD option is:

1. 1 byte = C0H. Backward EOF. Ignore it.
2. 1 or more entries of the form:

1. 2 byte memory location value, 1st byte = low value, 2nd = high.
2. Control byte, bits 7 - 0 (7 is left most):

7-6 = 11. Dummy last entry in table. Ignore all other bits and
bytes of the entry.

7-6 = 01. Referencee entry. Bits 5-0 = 0. The location is
referenced by one or more of the subsequent
referencer entries.

7-6 = 00. Referencor entry. The instruction at this location
referenced the location of the previous reference
entry. Bits 5-0 contain the references instruction
type: 0 = S, 1 = T, 2 = U, 3 = V, 4 = W, 5 = X, 8 =
P, 9 = L, and 10 = R. See a reference listing for
definitions.

6.3. LMOFFSET

Program LMOFFSET/CMD reads a tape or disk load module, displays its load
information, optionally changes the program's load area, optionally attaches
an appendage enabling the program at execution time to move itself from its
load area to its execution area, optionally prepares the module to run under
non-disk BASIC via SYSTEM, and stores the module onto disk or tape with a new
name.

LMOFFSET functions as follows:

1. Reads either a tape-type assembly load module from tape or a disk-type
assembly load module from disk.

If from disk, LMOFFSET asks for the source filespec.

ADDITIONAL PROGRAMS 6-10

When reading from tape, a single * will be displayed when LMOFFSET
is ready for the tape. Do rewind (if necessary) fast forward
positioning (if necessary) and press PLAY. *** appears when tape
read synchronization has completed. The character C will be
displayed when a bad checksum is encountered. The character P will
be displayed if leading extraneous data bytes encountered. The
character I will be displayed if imbedded extraneous bytes are
encountered.

2. Displays (1) the area into which the module will load, (2) possible
conflicts with system storage and (3) the module entry point. If an
appendage is scheduled to be applied, the entry point will be into the
appendage.

3. Asks for a new load point. Reply either with a new load point or
simply reply ENTER if satisfied with the current load point. If the user
is simply transferring the load module without change, respond ENTER to
the first request for a new load point and LMOFFSET will go directly to
step 7 below.

4. If a new load point specified, LMOFFSET asks if the appendage is to be
suppressed.

If the appendage is to be suppressed, the resulting module can only
be used via the DOS library command LOAD as there is no appendage to
move the program to its execution area and the entry point is forced
equal to 0. The resulting output load module can be used via LOAD
where two or more load modules are loaded into main memory and then
stored as one load module via DOS library command DUMP.

If the appendage is not to be suppressed, then LMOFFSET will append
to the user program either a DOS enabled appendage or a DOS disabled
appendage, depending on whether DOS is to be disabled or not.

5. If a new load point was specified, LMOFFSET goes back to 3 above to
display the resulting load information and ask for a new load point. If
another load point is given, it cancels the one specified earlier,
including its scheduled appendage, if any.

6. Finally, when the response to 3 above is a null, then if a new load
point was specified and the appendage is not suppressed, LMOFFSET asks if
DOS is to be disabled. If so, the DOS disabled appendage is selected; if
not, the DOS enabled appendage is selected.

7. LMOFFSET next asks if the destination is disk or tape.

If the destination is disk, LMOFFSET asks for the filespec of the
load module file to be created.

If the destination is to tape, LMOFFSET asks for the tape module
name and then which tape speed (L or H). Next it asks for ENTER when
the tape is positioned and in record mode.

8. The resulting load module is then written to disk or tape. If a new
load point was specified, (1) the load address for each object code
record is altered, (2) if the appendage was not suppressed, an extra

ADDITIONAL PROGRAMS6-11

object code record (the appendage) is inserted before the entry point
record and the entry point is set to the appendage's 1st byte, and (3)
the entry point is set to 0000 if a new load address was specified and
the appendage was suppressed.

9. When the destination file write is completed or if an error or other
type of termination occurs during step 7 or 8 above, LMOFFSET asks if the
same module is to be written to another file (which may be the same
file). If so, steps 7 and 8 above are repeated.

10. When all done or if an error or other type of termination occurs
while not in steps 7 or 8, LMOFFSET asks if another source load module is
to be processed. If so, execution returns to step 1 above; if not,
LMOFFSET exits back to DOS.

The up-arrow key may be used at any time to terminate the current LMOFFSET
function. If LMOFFSET is waiting for a response, hold down the up-arrow key
and press ENTER.

A module can end up with multiple appendages if the output from one LMOFFSET
run is made the input to another, but doing this is strongly discouraged; in
the case where one appendage is a DOS disable appendage, it must never be
done. LMOFFSET knows nothing of a previously existing appendage appended by a
revious execution of LMOFFSET.

LMOFFSET does not perform any object code relocation!!!! It only assigns code
to new load locations so that DOS can load the module from disk without
damage to DOS.

If the source program loads into the display area 3C00H - 3FFFH) without
overflowing it, those object code records will not have their load addresses
modified.

The appendage added to a module by LMOFFSET starts with 64 bytes of zeroes.
This area is available to users to patch in special code. The load address of
this patch area is the same as the module's resulting entry address,
providing there is only one appendage. Z-80 code patched into this area will
be the first executed when that program commences execution. This will be
done before the program is moved to its execution locations and before DOS is
disabled, if DOS is to be disabled.

When a program is to run in any part of the DOS area, a DOS disabling
appendage must be specified. The DOS disabling appendage causes the user
program to execute as if it was loaded from tape under the non-disk BASIC
SYSTEM function.

When the resulting user program module is executed, the action is as follows:

For a DOS enabled appendage:

1. Executes any user supplied code in the 64 byte patch area.

2. Moves the main program to its execution locations.

3. Commences execution of the main program.

ADDITIONAL PROGRAMS 6-12

For a DOS disable appendage:

1. Executes any user supplied code in the 64 byte patch area.

2. Moves the display screen contents to high memory.

3. Displays the following:

RECORD AND THEN PERFORM THE FOLLOWING INSTRUCTIONS

1. HOLD DOWN BREAK KEY AND PRESS RESET TO ACTIVATE NON-DISK BASIC.
2. RELEASE BREAK KEY AND ENTER BASIC INITIALIZATION RESPONSES.
3. ENTER "SYSTEM".
4. ENTER "."

4. When the operator has done the above, the appendage continues
execution.

5. Restores the screen contents from high memory.

6. Moves the main program to its execution locations.

7. Commences execution of the main program.

6.4. DIRCHECK

The DIRCHECK/CMD module tests and lists the target diskette's directory. If
errors are found in checking the directory, they are listed before the direc-
tory listing. DIRCHECK also allows the option of cleaning up (not repairing)
the directory, and, as an aid to moving single density diskettes back and
forth between the Models I and III under NEWDOS/80, allows the option of
writing the directory protected.

To the query 'OUTPUT TO PRINTER', reply Y if output to go to printer and N if
to go to the display.

To the query 'WHICH DRIVE CONTAINS TARGET DISKETTE', reply the target drive
number, in decimal.

DIRCHECK reads the BOOT sector (the diskette's 1st sector), and tests that
the first 2 bytes are 00H and FEH respectively. If they are, DIRCHECK uses
the 3rd byte as the number of the lump at whose first sector the directory
starts. If the first 2 bytes are not correct, DIRCHECK displays '*****
DISKETTE 1ST SECTOR NOT "BOOT". ASSUMING DIRECTORY STARTS ON LUMP 17
DECIMAL.'.

DIRCHECK proceeds to read the directory. In previous NEWDOS versions,
DIRCHECK refused to process a directory that was not write protected. Because
of the problem of moving single density diskettes between the Model I and
Model III under NEWDOS/80, an unprotected directory will now be accepted,
with two error messages displayed, one at this time and one after the files
have been listed. The error message is '***** AT LEAST ONE DIRECTORY SECTOR
UNPROTECTED'. If this message appears along with many other errors, the user

ADDITIONAL PROGRAMS6-13

can assume that DIRCHECK has not found the directory and should NOT execute
the W function described later.

DIRCHECK uses the drive's PDRIVE (see section 2.37) data to determine the
number of lumps and granules accounted for by the directory. If the PDRIVE
data is not correct for the diskette, it is very probable DIRCHECK will list
errors that are, not actually present.

Complaints, if any, about the directory are next listed. If a number is
given, it is in hexadecimal for use in directory repair via SUPERZAP. Do not
try to repair a bad directory unless you know what you are doing!!!!!!! The
next best thing is to try to extract valued files via COPY and then re-format
the diskette having the bad directory.

If the complaint is about a directory entry for a file, either the primary or
an extended entry, the hexadecimal code is the DEC for the file's FPDE. When
the complaint deals with a file extended directory entry but does not specify
the file name/type, the hexadecimal code is the DEC for the FXDE itself. When
the complaint deals with a HIT sector byte, the hexadecimal code is the rela-
tive location of that byte in the HIT sector. When the complaint deals with a
GAT sector byte, the hexadecimal code is the relative location of that byte
in the GAT sector. When the complaint deals with a granule, the hexadecimal
value is expressed in bb,r format where bb is both the lump number and the
relative byte location of the lump's byte within the GAT sector and x is both
the relative granule within the lump and the bit number, counting from zero
from the right, within that GAT byte.

The diskette's name and date are next listed.

The files are next listed, with numeric values in decimal and the following
definitions:

S System file.

I File has invisible attribute.

P=nnn File has access level nnn, and both update and access
passwords are non-blank.

EOF=sss/bbb End Of File value. ass = the relative sector within the
file. bbb = the relative byte within the sector.

nnn EXTS nnn is the number of extent elements, maximum of four per
FDE, used to account for this file's disk space.

nnn SECTORS The number of sectors allocated to this file.

Lastly, the number of free granules and locked out granules for the diskette
are displayed. If the diskette contains more than 60H (96 decimal) lumps or
if GAT relative byte 60H equals 0FFH, DIRCHECK assumes that there is no
lock-out (existence) table. Note, NEWDOS/80 does not mark granules as locked
out; the lockout table is maintained only for compatibility with Model I
TRSDOS.

If at least one directory sector is unprotected, another error message
indicating such is displayed.

ADDITIONAL PROGRAMS 6-14

'FUNCTION COMPLETED' message is displayed followed by the query:

REPLY
N TO EXIT PROGRAM
Y IF ANOTHER DISKETTE FOR SAME SPECS
I FOR PROGRAM RE-INITIALIZATION
W TO WRITE DIRECTORY SECTORS PROTECTED
C TO CLEAN UP (NOT REPAIR) THE DIRECTORY

Reply with one of the following:

N Program exits to DOS at 402DH.

Y Another diskette to be checked but with same response to the
printer query.

I Another diskette to be checked but with different response to
the printer query.

W The directory sectors are read and re-written in protected
state. Refer to specifications for DOS command WRDIRP (section 2.49) and
option SYSTEM option BN (section 2.46). This function is only meaningful
for single density diskettes that are going from Model I to Model III or
vice versa or used interchangeably.

C All unused FDEs within the directory are zeroed. This is a
cosmetic function only that clears out residual information from no
longer used FDEs. Normally, when DOS releases FDEs via KILL or automatic
space deallocation, it only zeroes bit 4 of the first byte of the FDE,
leaving the rest of the information for the remote possibility that the
sophisticated user will attempt to reclaim the file or the sectors it
used to own.

During display or printing, pressing:

BREAK - processing will pause at end of current line or line group.

ENTER - continues processing.

UP-ARROW - terminates displaying or printing.

6.5. EDTASM Disk Oriented Editor/Assembler

35 months ago Apparat converted the TRS-80's tape oriented editor/assembler
to:

1. Read text from disk as well as cassette.

2. Write text and/or object to disk as well as cassette. Disk files are
validity read after all sectors written.

3. Allow down-arrow scrolling to display up to 15 text lines.

ADDITIONAL PROGRAMS6-15

4. Prevent the confusing printer output associated with DEEM. Only the
1st byte of associated object code is listed.

5. List symbols in alphabetical order with reference list.

6. Accept and convert lower case alpha to upper.

It was anticipated that Radio Shack would soon come out with a disk oriented
editor/assembler that would eliminate any need for the Apparat enhancements.
To a degree that has come to pass, but not sufficiently to bury the Apparat
enhanced version. Since the Apparat enhanced version is based on the
copyrighted tape editor/assembler, Apparat has always required and still
requires, as a pre-condition of use of its enhanced version, that the user
purchase a copy of the TRS-80 tape editor/assembler and thereby pay the
royalty due. In an effort to enforce this, Apparat has always refused, and
will continue to refuse, to supply any documentation for the editor/assembler
beyond that dealing explicitly with Apparat's enhancements.

This EDTASM is essentially the same as that offered with NEWDOS/21 and
NEWDOS/80 Version 1 except:

1. EDTASM will now display, as part of the 'A' CMD, after the TOTAL
ERRORS display, the number of bytes left in the text area so the user can
judge his approach to symbol table overflow or text buffer overflow.

2. (Model III only) Object code cannot be outputted to tape. The user
must output the object code to disk and then use LMOFFSET to copy it to
tape.

Supplemental instructions for the editor-assembler.

1. To load a text module into the text buffer, enter one of the following
commands:

1. L D=filespec1 if text from disk
2. L T=nnnnnn if text from cassette

where filespec1 is the filespec for the assembler text module to be
loaded into the text buffer from disk and nnnnnn is the name of the
assembler text module to be loaded into the text buffer from tape.
Examples:

1. L D=OLDTEXT/SRC:1 loads the assembler text file OLDTEXT/SRC
into the text buffer from the diskette currently mounted on
drive 1.

2. L T=OLDTXT loads the assembler text file OLDTXT into
the text buffer from tape.

If the text buffer already contains text, the query 'TEXT IN BUFFER.
ARE YOU CONCATENATING???' appears. If you are not concatenating,
reply N; the buffer is marked empty before loading the specified
text module. If you are concatenating, reply Y to cause the new text
to be appended onto the end of the old. No concern is shown for
overlapping sequence numbers; therefore you should execute a N

ADDITIONAL PROGRAMS 6-16

EDTASM command upon completion of the load to assure a valid set of
ascending sequence numbers.

2. To store a text module:

1. W D=filespec2 if text going to disk
2. W T=nnnnnn if text going to cassette

where filespec 2 is the filespec of the disk file to receive the
assembler text from the buffer and nnnnnn is the one to six
character name given to the text file written to tape. Examples:

1. W D=NEWTEXT/SRC:1 The assembler text (not the object code)
currently in the text buffer is written to file NEWTEXT/SRC on
the current diskette mounted on drive 1.

2. W T=NEWTXT The assembler text currently in the text
buffer is written to tape and named NEWTXT.

3. For A commands with NO option not specified, respond to the query
'OBJECT FILE TO DISK OR TAPE? REPLY D OR T?':

1. T (Model I only) Object code going to cassette. The program name
will come from the A command.

2. D Object code going to disk. Respond to the query 'OBJECT
FILESPEC?' with the nnnnnnnn/ttt.pppppppp:d filespec of the object
module. The file will be opened immediately, but not written until
end of assembly listing. The name in the A command is ignored.

4. When an output text or object disk file is opened, one of the
following is displayed:

1. 'FILE ALREADY EXISTS. USE IT????'. Reply Y if this is your
intention. Otherwise reply BREAK to terminate the W or A command.

2. '************** FILE NON-EXISTENT. REPLY 'C' TO CREATE IT'. Reply
C if this is your intention. Otherwise reply BREAK to terminate the
W or A command.

5. Due to an error in the original DOS, EDTASM runs with interrupts
disabled (except when re-enabled by disk I/O) in order that use of BREAK
will function properly.

6. This EDTASM can execute in a regular TRSDOS Model I environment.

7. This EDTASM uses the standard keyboard, display and printer routines
and control blocks. Users altering the system beware!!!!

6.6. CRAINBLD

The BASIC program CHAINBLD/BAS is a simple program to allow users to create
and modify chain files (chaining is discussed in section 4.3).

ADDITIONAL PROGRAMS6-17

CHAINBLD operates in record mode, requiring that an EOL character (ENTER
character) appear in the file at least every 240 bytes, and it treats each
occurrence of the EOL character as both the end of a BASIC input line and the
end of a record within a chain file. A11 inserts, deletions, replacements,
moves and copies are done in terms of records.

Furthermore, CHAINBLD makes no provision (except for the old Version 1 hex
codes 80 - 83) for the file to contain special non-printable characters. The
rule is that if the string resulting from the BASIC statement LINEINPUT C$
does not contain a given character, then that character cannot become part of
the chain file. The exception is the EOL character, which is automatically
supplied by CHAINBLD. If the user needs special characters in his/her chain
file, some other program must be used to build the chain file. As a last
resort, there is always SUPERZAP.

The CRAINBLD program starts off with a 16 second initialization period while
it allocates maximum space to the string area. Users are warned that if BREAK
is used to interrupt or terminate the CHAINBLD program, they must remember
that all available space has been assigned to the string area and that due to
this lack of space, some functions will not work. If a CLEAR is done to free
up some space, be sure to specify .a string area size.

After initialization, the main menu is displayed (not to be confused with the
edit menu). The choices are:

1. DELETE ALL TEXT LINES All the text lines in the string area are
deleted and the edit menu is displayed. When CHAINBLD starts execution,
there are no text lines in the string area.

2. LOAD EXISTING TEXT FROM DISK Use this option to edit an existing chain
file. If the string area already contains text lines, CHAINBLD will ask
if those lines are to be deleted. If not, CHAINBLD returns to the main
menu as it assumes the user wants to do more with the previous text.
Otherwise the old text lines are deleted.

CHAINBLD will then ask for the existing chain file's filespec. If the
filespec does not contain a name extension, the name extension JCL is
assumed. The file is then loaded into the string area. The file cannot
exceed the string area capacity and cannot have more than 1000 lines. The
file must be segmented into records as discussed above. After the load,
CHAINBLD displays the edit menu.

3. SAVE TEXT TO DISK The user has completed the creation and/or editing
of the chain file text and now wants to write it to disk. If there are no
text lines, the CHAINBLD will ask if a null file is to be written; if
not, CHAINBLD goes back to the main menu.

Next, CHAINBLD asks if the file is to be written so that it can be
processed by NEWDOS/80 Version 1. If so, any /./0 through /./3 chain
control records are changed as they are outputted by substituting the
corresponding single byte control code (80H - 83H) in place of the /./x
character sequence. The text in the string area is not changed.

CHAINBLD then asks for the output file filespec. If the filespec does not
contain a name extension, the name extension JCL is used. The file is
then written to disk. When done, CHAINBLD goes back to the main menu.

ADDITIONAL PROGRAMS 6-18

4. EDIT TEXT This option does nothing except display the edit menu.

5. EXIT PROGRAM If the string area contains text that has not yet been
written to disk, CHAINBLD asks if the user really wants to exit the
program; if not, CHAINBLD goes back to the main menu. Otherwise CHAINBLD
deletes all text lines and releases all string space except 50 bytes. The
program then ends in the normal manner.

When the edit menu is displayed the user has a number of choices:

1. List text lines. The text lines are implicitly numbered in sequential
order regardless of the changes that take place is the text. Line numbers
do not belong to individual text lines. Instead a line number indicates
the line's position at the current time within the file. This means that
insert, delete, copy and move all change the line numbers of some or all
of the text lines. The L and ; edit commands allow the user to display
the text lines. L; displays the first line. L/ displays the last. L52
displays the 52nd line. In each case, if any text lines follow the target
line in the text, they are also displayed. The ; edit command allows
forward text paging.

2. The I edit command allows for a one or more text lines to be inserted
in the text after the specified line. 10 does inserting at the start of
the text. I/ does inserting at the end of the text. 123 does inserting
after line 23. Lines are inserted into the text until, but not including,
a line containing the /.// character sequence is encountered. That
character sequence terminates the line insert mode.

3. The R edit command allows a new line to replace an old line. R43
causes text line 43 to be replaced with the new line that CHAINBLD will
ask for.

4. The D edit command allows one or more text lines to be deleted. D34
deletes text line 34. D 20 41 deletes text lines 20 through 41.

5. The X edit command allows the specified text line to be added onto.
Note that CHAINBLD does not actually allow a line to be edited. The edit
mode really refers to editing the entire text.

6. The C edit command allows the specified lines to be duplicated to
another part of the text. C 20 30 5 causes a copy of text lines 20
through 30 to be inserted after text line 5. Please note that the old
lines 20 through 40 will now have line numbers 31 through 42.

7. The M edit command allows the specified lines to be moved to another
position in the text. M 20 30 5 causes the text lines 20 through 30 to be
deleted from the text and reinserted after text line 5.

8. The U edit command redisplays the edit menu.

9. The Q edit command redisplays the main menu.

The best way to learn CHAINBLD is to use it. The NEWDOS/80 distribution
diskette comes with a sample chain file named CHAINTST/JCL. Load it in and
look at it. Once in the string area, you may modify the text as desired, but
do not store it back out as CHAINTST/JCL; use some other name.

ADDITIONAL PROGRAMS6-19

6.7. ASPOOL

1. The object module ASPOOL contained on the NEWDOS/80 diskette is H. S.
Gentry's automatic Spooler Program, modified by Apparat to operate with
NEWDOS/80 and to self-relocate. This program will automatically direct your
printer output to the disk, and then automatically print it on the printer.
This spooler program will print in the background while your foreground main
program is executing provided the main program every second or so either
sends a byte to be spooled or checks the keyboard for a new input character.

This spooler program is included on the NEWDOS/80 diskette as a free program
to NEWDOS/80 owners. It is NOT a fully supported part of NEWDOS/80.

The basic operation of NEWDOS/80 DOS assumes that output that DOS sends to
the printer will not involve disk I/O enroute to the printer. Therefore, the
spooler discards all printer output it senses coming from DOS (such as PRINT,
JKL, DIR with P option) with the warning message CAN'T SPOOL FROM DOS being
displayed once for each spooled file.

This spooler program does NOT allow a spool file to be printed multiple
times; once printed, the file EOF is set to 0 and the file closed to reclaim
the file space. This spooler program does NOT remember spool contents from
one spool activation to the next (this includes a reset). The user is warned
that while the spooler is active, do NOT use reset or DOS library command
BOOT to get to DOS ready. Instead, if another way is not available, use DFG
to get to MINIDOS and then DOS library command MDBORT to get to DOS READY or
use '123' to get to the DEBUG facility and then use DEBUG command Q to get to
DOS READY.

2. INITIAL SETUP. Create a working spool module.
Before the spool system can be used, working program module copy(s) of ASPOOL
must be set up. You should set up a working program module for each different
configuration you intend to use. When making a working program module, the
input module 'filespec1' must ALWAYS be ASPOOL/MAS or a copy of it, and the
output module 'filespec2' must NEVER be ASPOOL/MAS. To create a working spool
program module (as opposed to the master), enter the DOS command filespec1,I
(example: ASPOOL/MAS:0,I). The program will then ask for parameter specifi-
cations:

The program asks if the software printer driver whose address in is 4026H
- 4027H at the time of spooler activation is to be used to drive the
printer. Reply Y for yes or N for no (the spooler will drive the
printer). If N, then:

The program asks if the printer is parallel or serial. Answer P for
parallel or S for serial. If serial, then:

The program asks if the printer is an H14 type. Respond Y for
yes and N for no.

The program asks if the printer output is to be formed into pages with a
form feed between pages. Reply Y for yes and N for no. If Y, then:

The user will be asked for the number of print lines per page. Enter
a number between 10 and 99.

ADDITIONAL PROGRAMS 6-20

The program asks if the printer uses a soft or hard form feed. A soft
form feed is done by counting the number of lines printed and then
printing carriage returns (OUR) (with or without line feeds (OAR)) until
the end of the page is reached. A hard form feed is a single control
character that causes a form feed function. If your printer will
recognize a hard form feed answer H, otherwise answer S. If soft form,
then:

The program asks for the total number of lines per page. Answer with
a number between 10 and 99.

The program asks if a form feed is to be done at the end of each print
file. Reply Y for yes and N for no.

The next question concerns automatic linefeed on each carriage return.
Some printers linefeed on carriage returns and the computer should not
output linefeeds. If your printer is of this type (Radio Shack standard)
answer the question with N. If you want the software to generate
linefeeds then answer with Y.

The program asks for the number of the disk drive that will be used to
spool the print data. Answer with a number from 0 to 3.

The program asks for the number of seconds to transpire after the last
keyboard key inputted until the spool program can start printing again.
Respond with a 2 digit value 00 - 59. The purpose of a non-zero delay is
to allow the keyboard to have primacy over the printer. When a keyboard
key is depressed and if the spool program is printing a file, printer
action will pause while keys are being inputted and until the required
number of seconds have passed since the last key.

The program asks if the printer is to be driven by the timer interrupts
(every 25ms on the Model I; every 33 or 25ms on the Model III) as well as
via keyboard input and spooler output. Reply Y for yes if the interrupts
are to be used; reply N for no. Allowing the interrupts to be used en-
ables the spooler program to print while a foreground program is
executing that does not frequently check the keyboard or send output to
the spooler. The disadvantage of using the interrupts is that for a
buffered printer, interrupts are disabled during the entire outputting of
a line to the printer. However, the time delay will probably be no worse
than that associated with disk I/O. If the interrupts are used, printing
will nevertheless stop if the foreground program never sends anything to
the spooler or tests the keyboard for input. This is because the disk I/O
to read the next sector is done only during keyboard checking or main
program output to the spooler. See circular buffer discussion for an
additional disadvantage when the interrupts are used.

The program asks if the circular buffer is to be used to buffer keyboard
input characters. Reply Y if yes; N if no. The circular buffer helps
prevent lost keyboard input. If the 25ms interrupt is enabled to drive
the printer (see above option), the circular buffer uses the ROM keyboard
character input routine and therefore disables any drivers (such as
NEWDOS/80's keyboard intercept routine, lower case driver, etc.)
activated before the spooler is activated. If the 25ms interrupt is not
used to send spooled output to the printer, then that does not frequently
check the keyboard or send output to the spooler. The disadvantage of

ADDITIONAL PROGRAMS6-21

using the interrupts is that, for a buffered printer, interrupts are
disabled during the entire outputting of a line to the printer. However,
the time delay will probably be no worse than that associated with disk
I/O. If the interrupts are used, printing will nevertheless stop if the
foreground program never sends anything to the spooler or tests the
keyboard for input. This is because the disk I/O to read the next sector
is done only during keyboard checking or main program output to the
spooler. See circular buffer discussion for an additional disadvantage
when the interrupts are used.

The program asks if the circular buffer is to be used to buffer keyboard
input characters. Reply Y if yes; N if no. The circular buffer helps
prevent lost keyboard input. If the 25ms interrupt is enabled to drive
the printer (see above option), the circular buffer uses the ROM keyboard
character input routine and therefore disables any drivers (such as
NEWDOS/80's keyboard intercept routine, lower case driver, etc.)
activated before the spooler is activated. If the 25ms interrupt is not
used to send spooled output to the printer, then the regular keyboard
routine(s) (as existed in the 4016H - 4017H vector at spool activation)
is used. This latter also holds if the circular buffer is not used,
regardless of whether or not the 25ms interrupt is used.

Now that the spooler has all the initialization parameters, the
in-main-memory program is altered. The program then asks for the filespec of
the working program module to be stored on disk. Respond with the filespec
you will use in the filespec2,A DOS command discussed below; do NOT respond
ASPOOL/MAS!!!!!! The working program module will be written to disk, and the
spool program exits to DOS via 402DH. HINT: Use SPOOLER/CMD for filespec

3. ACTIVATE SPOOLING. When spooling is to be used, enter the DOS command
"filespec2,A" (example: SPOOLER,A) where filespec2 is the filespec of one of
the working spool program modules you have created. filespec2 must NEVER be
ASPOOL/MAS. If the spooler is already active, 'FILE ALREADY EXISTS' error
message is displayed.

The module will load into the 5200H - 5FFFH region, relocate itself to
HIMEM-areasize1+1, and sets HIMEM = HIMEM-areasize1 where HIMEM is the DOS
high memory address contained in Model I locations 4049H - 404AH (Model III
locations 4411H - 4412H) and areasize1 is the amount of memory required by
the spooler. Then the keyboard vector at 4016H - 4017H and the printer vector
at 4026H -4027H are intercepted to vector to the spooler. If interrupts are
to be used, a routine is entered into NEWDOS/80's 25ms interrupt chain of
user interrupt routines. 'SPOOLER ACTIVE' is displayed, and the 402DH exit is
taken to DOS.

The spooler is now active. All data intended for the printer will be directed
to one of five disk files (POOL1, POOL2, POOL3, POOL4, POOL5). Why five files
you may ask? Well, when you have "printed" as much data as you wish and would
like that data to be actually printed on the real printer, you send an
end-of-file to ASPOOL. This is done either via DOS command *ASP,W
(CMD"*ASP,W" from BASIC) or by outputting to the spooler a 03 byte in the
normal print stream

(LPRINT CHR$(3) from BASIC). The file that was spooling will be closed and
scheduled for printing. You may now spool to another file by just "printing"
more data. The data will be placed on the disk while the first data file is

ADDITIONAL PROGRAMS 6-22

being printed. This procedure may be repeated five times. If you try to spool
a sixth file before the first has been printed on the real printer, the
system will display 'SPOOL FULL. WAITING ON PRINTER' and will hang until a
file is printed. All data is printed on the real printer in the background
while the current or another main main task is executing or simply while the
system is waiting for the user to tell it what to do next. Whenever *ASP,W is
executed or a 03 byte is seen in the output to the spooler, the spooler
program considers this an end of file (performing top-of-form if specified)
even though you may be sectioning your spooled output for one report to keep
the printer going and avoid running out of space.

Warning!!! The Model III ROM routine, normally used by the spooler, will
discard the current character being sent to the printer if it senses the
printer is not ready (including busy) and the BREAK key is pressed. Since the
executing foreground program may be using the BREAK key while the spooler is
printing in the background, there will be times when printer characters will
be lost, unknown to the spooler. This can serious limit the usefulness of any
spooler on the Model III that uses the ROM printer driver routine.

You may bring the spool system down gracefully at any time by the DOS command
*ASP,S (CMD"*ASP,S" from BASIC) or by sending a 04 byte in the normal output
to the spooler (LPRINT CHR$(4) from BASIC). This procedure will purge the
current spool file, will prevent any new files from being created, and will
display 'SPOOL STOPPING'. Main program execution then continues, any
characters sent to the spooler will be ignored and the spooler continues to
print any files that have been scheduled. When all files have been printed,
the *ASP,P function is performed. NOTE, if the spooler appears to hang, it is
probably waiting for the main program to check the keyboard. If the main
program can't do this, try DFG, but wait till the drives stop.

You may bring the spool system down abruptly at any time by entering DOS com-
mand *ASP,P (CMD"*ASP,P" from BASIC). All remaining spooled data is lost. If
an interrupt routine was active, it is purged. The keyboard and printer
vectors are restored to what values they were when the spooler activated. If
DOS's HIMEM value is the same as that set by the spooler when activated,
HIMEM is set back to what it was before the spooler was activated, thus
reclaiming the spooler's main memory. However, it the HIMEM is not the same,
HIMEM is not changed, and the spooler memory remains lost to subsequent main
programs. 'SPOOLER PURGED' is displayed, and the DOS 402UH exit taken to DOS.

You may flush the print queue at any time by entering DOS command *ASP,C
(CMD"*ASP,C" from BASIC). The spooler will respond with "CLEAR BACKLOG OR
PRINT (B/P)?". Respond with a B and Enter if you wish to clear the backlog,
or a P and Enter to stop printing the current print file. Clearing the
backlog does not purge the current print file, and clearing the current print
file does not purge the backlog.

The status of the spool system may be determined at any time by entering the
DOS command *ASP (CMD"*ASP" from BASIC). The system will print a list of all
files waiting to be printed (BACKLOG) and any file that is open for printing
or spooling. If the system has been stopped but not yet purged, "SPOOL
STOPPING" will be displayed. If the spooler has been purged or not activated,
'FILE NOT IN DIRECTORY' is displayed.

DISK BASIC NON-I/O7-1

7. DISK BASIC, NON-I/O ENHANCEMENTS

7.1. INTRODUCTION, Requirements

For NEWDOS/80 most, but by no means all, of the interface specifications
between BASIC and the BASIC programmer remain the same as for DISK BASIC
under TRSDOS 2.3 on the Model I and for TRSDOS 1.3 on the Model III. The
NEWDOS/80 BASIC user is expected to have and be knowledgeable of both the non
disk BASIC manual and the disk BASIC portions of the TRSDOS manual for
whichever of the two TRS-80 models is being used. The current and next
chapters of this NEWDOS/80 version 2 documentation discuss only the
differences from the TRS versions. Both the Tandy manuals are excellent; if
they didn't come with your TRS-80 when you bought it, buy them!!!! Apparat
does not, in this manual, duplicate their contents.

7.2. General comments

1. When a BASIC syntax error occurs, BASIC does not automatically enter
EDIT on the offending text line, but it does set that line as the current
line. If the operator wishes to edit the line, press comma. This change
is to make it more difficult for the operator to inadvertently clear
variables that he/she would otherwise want to see to assist in debugging.

2. BASIC programs may disable the BREAK key via CMD"BREAK,N", and
re-enable it by CMD"BREAK,Y".

3. Because CLOAD does a NEW function between consecutive bytes from tape,
it will lose synchronization if BASIC is running with more than 3 file
areas.

4. When a DOS error is encountered by BASIC and if no ON-ERROR routine is
active, both the DOS error message and the BASIC error message are
displayed.

5. BASIC now has a total of 8 overlays that it uses. The user will notice
that disk I/O occurs whenever RUN is executed and whenever execution is
interrupted (STOP, error or BREAK) or terminated (END); this is done to
bring in BASIC routines needed for the current or anticipated next
function.

6. NEWDOS/80 DISK BASIC does NOT allow text line deletion to be done by
simply typing in the line number. The explicit delete command, DELETE or
D, must be used.

DISK BASIC NON-I/O 7-2

7.3. Activating DISK BASIC
DISK BASIC is activated by keying in one of the following commands to DOS:

1. BASIC
2. BASIC
3. BASIC n
4. BASIC m
5. BASIC cmd
6. BASIC n,m,cmd
7. BASIC m,n,cmd
8. BASIC n,m
9. BASIC m,n
10. BASIC n,cmd
11. BASIC m,cmd

where:

* means the user wants BASIC to reinstitute the program in the text
buffer, using the same values for m and n as appear to exist in main
memory. This allows the user to recover from an unwanted 'reset' or to
get back to the same program after a CMD"S". If BASIC is able to accom-
plish this, it forces 'LIST' as its first command. If BASIC is unable to
reinstitute the program, it exits to DOS READY. BASIC * will not work if
n was less than 2 or if the program was less than 3 lines.

n = the number of fileareas that BASIC is to allocate, default = 3, max-
imum = 15. This is the highest fan (filearea number) that will be used in
any statement during this invocation of BASIC. If the BASIC program is to
use field item files with standard record length not equal to 256, then n
must be specified and must be suffixed with the character V (see example
4 below).

m = memory size. The value m minus 1 is the highest memory location that
BASIC is allowed to use. If m is not specified, the current DOS HIMEM
value is used. All memory m and above is not used by BASIC and can be
used for other routines such as printer drivers, special code USR
routines, etc.

cmd = one line of BASIC text, consisting of one or more BASIC statements.
This text line is considered direct keyboard input and will be executed
as soon as initialization is completed.

Remember, the DOS command activating BASIC is limited by DOS to a maximum of
80 characters, including ENTER, and it is further limited to 32 characters,
including ENTER if invoked via 'AUTO'.

Any error encountered during initialization causes a return to DOS.

If DOS is in RUN-ONLY state, the DOS command activating BASIC must contain a
RUN or a LOAD (option R) statement.

Examples:

1. BASIC Brings up BASIC with 3 file areas, high memory set to the
current value for HIMEM in DOS and displays 'READY', waiting for the
operator's command.

DISK BASIC NON-I/O7-3

2. BASIC,RUN"XXX/BAS" Brings up BASIC with 3 file areas, high memory
set to the current DOS HIMEM value, loads BASIC program XXX/BAS into the
text area and starts its execution.

3. BASIC,9,48152,LOAD"XXX/BAS" Brings up BASIC with 9 file areas,
high memory set to 48151 (1 less than 48152), loads BASIC program XXX/BAS
into the text area and displays 'READY', waiting for the operator's
command.

4. BASIC,3V This works the same as example 1 above, except that
each of the 3 files areas is assigned an extra 256 byte buffer. This
extra buffer per filearea is needed if the program will be using field
item files with a record length other than 256.

5. BASIC,CLEAR3000:A=1:RUN"XXX",V Brings up BASIC with 3 fileareas,
sets its high memory value to DOS's current HIMEM value, performs CLEAR
reserving 3000 bytes for the string area, sets numeric variable A equal
to 1, loads BASIC program XXX and commences its execution without
clearing the variables, thus leaving variable A intact for the program to
inspect.

7.4. Direct Scrolling/Editing Commands
NEWDOS/80 DISK BASIC allows the following 'direct' commands:

. (period) LIST the current text line.

down-arrow LIST the next text line. If there is no next text line,
performs as / .

up-arrow LIST the text line before the current line. If none,
performs as ; .

; or shift-up-arrow LIST the first text line.

/ or shift-down-arrow LIST the last line in text. Users having the
newer ROM will find that shift-down-arrow is no longer a usable key;
hence the need for / .

: Scroll one display page toward the start of the text. When
done, the previous current text line is now at the bottom of the display
excepting that if the previous command was . or @ , the previous
display's top line is now the new display's bottom line. The new current
text line is the bottom line on the new display.

@ Scroll one display page toward the end of text. When done,
the previous current text line is now the at the top of the display, and
the new current text line is the bottom text line on the new display.

, (comma) EDIT the current text line.

Only 1 such command per direct statement line, and the command, to be seen,
must be the first character of the input line (no line number or backspacing
allowed).

DISK BASIC NON-I/O 7-4

7.5. Text Editing Command Truncation
NEWDOS/80 DISK BASIC allows the truncation of the commands AUTO, DELETE, EDIT
and LIST to A, D, E and L respectively when the following conditions are met:

1. 1st character of the input line.
2. Followed by either a period or a decimal digit.
3. The input line does not contain an =.

7.6. DI and DU text editing functions
DI and DU Two additional BASIC text editing functions are implemented using
the following forms of direct command:

1. DI aaaaa,bbbbb
2. DI .,bbbbb
3. DU aaaaa,bbbbb
4. DU .,bbbbb

where:

aaaaa is the line number of the text line to be moved or duplicated, and
bbbbb is the line number to be given the moved text line or the duplicate
of the text line.

DI means to delete the line at aaaaa and insert it at bbbbb.

DU means insert at bbbbb a duplicate of the text line at aaaaa, but do
not delete the line at aaaaa.

Text referring to aaaaa is not altered to refer to bbbbb. If this is
desirable, then use RENUM to move the text line.

The use of a period in place of aaaaa causes aaaaa to default to the last
line listed, edited or deleted.

7.7. RUN and LOAD (optionally retaining variables)
RUN and LOAD may now optionally retain all variables and open fileareas by
using the V option in the following formats:

RUN "filespec1",V
LOAD"filespec1",V

where filespec1 is the filespec of the program file being executed. The LOAD
with the V option executes exactly the same as the RUN with V option. The RUN
with V option preserves all the variables, excepting DEFFN variables, during
the execution of RUN; thus the variables existing before the RUN statement
can be used after the RUN statement. Any fileareas open prior to the RUN are
left open for use after the RUN statement. If the V option is specified, the
R option may not be. See example 5 in section 7.3.

DISK BASIC NON-I/O7-5

7.8. MERGE Dynamic loading of overlay program
The MERGE statement has been expanded:

MERGE will merge either an ASCII or a packed text file.

MERGE may be executed as a direct statement or as a program statement.

If MERGE is executed as a program statement, the MERGE statement must not
be part of a DEFFN statement, a subroutine or a FOR-NEXT loop (as a POPS
function is implicitly performed), must be the last statement of the text
line, must be followed by the text line where execution will continue
after the MERGE, and the merge file must not contain a line whose number
is the same as the number of a text line existing at the start of the
execution of the merge (use CMD"F",DELETE to delete conflicting text
lines before executing the MERGE). The merge protects all variables. The
user must assure enough main memory space is available for the merge as
error recovery is not possible if the merge fails once actual merging
commences. Example:

100 MERGE"XXX/BAS"
110 X=1 execution continues here after the MERGE is completed

7.9. RENUM Renumber the Current BASIC Program.

RENUM sssss,iiiii,ppppp,qqqqq[,U][,X]
RENUM ,
RENUM U
RENUM X
RENUM U,X

The current BASIC program or a part of it may be renumbered while it resides
in the text area. Via the U option, the RENUM does not actually perform
renumber but only does its text error checking, thus allowing the undefined
line numbers and some, but not all, syntax errors to be found. The user may,
by proper choice of the new line number values, move a portion of the program
to a different place in the program with all references to any of the moved
lines changed to the new lines numbers. Lastly, via the X option, RENUM will
not declare as an error any undefined line number if that line number lies
outside of the range of lines being renumbered, thus allowing a program to
have references within it to lines that are intentionally not part of the
program.

The basic renumber command causes all text lines whose line numbers are
greater than or equal to ppppp and less than or equal to qqqqq to be assigned
new line numbers. sssss is the first new line number assigned with subsequent
numbers generated by adding iiiii to the line number of the previous text
line. sssss and iiiii must be in the range 1 - 65529 and have default value
10. ppppp must be in the range 1 - 65529, has default value 0. qqqqq must be
in the range 1 -65529, greater than or equal to sssss, and has default value
65529. The range of newly generated line numbers must not encompass any old
text lines that are not part of the resequenced range ppppp - qqqqq
inclusive. So long as this rule is observed, the newly generated line number
range may be placed anywhere in the text with the renumbered text moved to
the proper new text location.

DISK BASIC NON-I/O 7-6

At least one parameter must be specified. If the user wants to specify all
defaults and neither X nor U, then use a comma as the only parameter.

For the series sssss,iiiii,ppppp,qqqqq, if one or more of the 4 numbers are
to use the default values, then commas must appear in the proper place to
indicate which of the 4 values a given line number is for. See example 4
below.

If the U option is specified, the text is not altered in any way and RENUM
simply searches text for undefined line numbers and for some errors
associated with BASIC statements that use line numbers. These errors are
displayed in the following format:

sssss/U - there is no text line sssss.
sssss/X - text line sssss has syntax error.
sssss/S - text line sssss has a bad line number.

If the X option is specified, references to non-existent text lines are not
displayed as errors if that line number is also outside of the ppppp to qqqqq
range. The X option is intended as aid to programmers who use a base program
and overlay programs which refer to text lines in each other.

If any error is encountered before text is altered, the command reverts to
performing as if the U option had been specified and displays all the errors
it can find. If an error is encountered after text alteration begins, 'FATAL
ERROR. TEXT NOW BAD' is displayed and the 4030H exit taken to DOS. The BASIC
text must not be reclaimed (don't use BASIC *).

If either SYS11/SYS or SYS13/SYS are not in the system when RENUM is
executed, the system will exit to DOS READY (see section 5.5).

RENUM will refuse to renumber a program whose first text line's number equals
0. Use 'DI' to assign the line a number other than 0. Examples:

1. RENUM U The BASIC text is checked for undefined line numbers and
other errors that would normally be encountered in an actual renumber.
The BASIC text is not altered.

2. RENUM , The entire BASIC text is renumbered using an increment of
10. The first text line is assigned line number 10, the 2nd assigned line
number 20, and so on.

3. RENUM 100,100 The entire BASIC text is renumbered using an incre-
ment of 100. The first text line is assigned line number 100, the 2nd is
assigned 200, and so on.

4. RENUM 2050,,2050,3160 All text lines from and including any
line numbered 2050 to and including any line numbered 3160 are renumbered
using an increment of 10. The first renumbered line is assigned line
number 205$, the second is assigned 2060, and so on.

5. RENUM 30000,5,15365,18112 All text lines from and including any
line numbered 15365 to and including any line numbered 18112 are
renumbered using an increment of 5. The first renumbered line is assigned
line number 30000, the 2nd is assigned 30005, and so on. The renumbered
text lines are moved to the new positions in the text.

DISK BASIC NON-I/O7-7

7.10. REF List references to variables, line numbers and keywords
The BASIC statement REF allows the BASIC programmer to find all places in the
program where a line number, an integer, a variable, a string, a function
code, a packed sequence of characters or an unpacked sequence of characters
is referenced. REF has the following formats:

1. REF* Display full reference list for all line numbers, integers
and variables.

2. REF$ Print on the printer a full reference list for all line
numbers, integers and variables.

3. REFnn Display all references to the variable(s) named nn. If nn
is only 1 character, a blank is assumed for the second. nn may not be
more than 2 chars and must not have a type suffix.

4. REFsssss Display all references to the line number and/or integer
sssss where sssss is a 1-5 decimal digit number between 0 and 99999.
Hexadecimal or octal references within the text are not listed.

5. REF*nn

6. REF$nn

7. REF*sssss

8. REF$sssss

9. REF Display the next text line containing at least one
reference to the variable or number specified by the last REFnn or
REFsssss statement executed. If there are no more referencing text lines,
'TEXT END' will be displayed. If 'REF' entered again, the first
referencing text line will be listed. Remembrance of the search variable
name or number and the current search line number within the text is
usually (but not always) lost when any command involving DOS is executed.

10. REF=xxx The character sequence xxx is packed by the standard
BASIC text packing routine. The BASIC text is then searched for a match
on the packed xxx value and the line numbers listed for all lines
containing the packed xxx value. If the packed value xxx is more than 16
bytes long, only the first 16 packed bytes participate in the compare.
This format of REF is to used when the user wants to know where in the
text a BASIC function code (i.e., PRINT, LPRINT, GOTO, etc) is used. The
text lines containing xxx can be displayed one at a time by repeated
issuance of the format 9 REF command.

11. REF"xxx This format operates similar to format 10 except that
xxx is not packed. xxx is considered a string unless xxx itself contains
a ". This format allows xxx to be found in strings and comments.

12. REF@sssss This statement is similar to format 9 except that the
search will start with 1st text line whose line number is greater than or
equal to sssss.

Press BREAK to pause, ENTER to continue, and up-arrow to terminate the REF
function. Formats 5-8 are the same as 1 and 2, except listing/printing starts

DISK BASIC NON-I/O 7-8

with the specified variable name or decimal number, if it exists, or the next
higher existing name or number, if not.

If SYS12/SYS is not in the system when the REF statement is executed, the
system will exit to DOS (see section 5.5).

7.11. Lower Case Suppression (Model I only)
Text String Lower Case Suppression (Model I only) Users who do not have the
hardware lower case modification or those that do but don't use a lower case
driver to bypass the ROM display routine will occasionally be puzzled why
some string compares fail and syntax errors appear in perfect appearing
statements. This is due to the acceptance of lower case letters into strings
which display as upper, and the acceptance of lower case @ into text
statements. Remember the ROM swaps lower case to upper and vice versa before
BASIC sees the characters. In the case of data, there is nothing that can be
done about this problem except to remember that if it appears equal.on the
display, there still may be a lower case/upper case mismatch in memory. For
text input, if system option AS = Y, text string lower case letters, but not
lower case @, will be forced to upper case, eliminating many of these
problems.

7.12. RUN-ONLY
For DISK BASIC there are two ways BASIC can be forced to run in RUN-ONLY
mode: (1) if system option AB = Y, and (2) if the BASIC program file is
password protected, passwords are enabled, the access password specified in
the RUN or LOAD (option R) statement and the access level = EXEC.

If system option AB = Y, the DOS command activating BASIC must contain the
necessary RUN or LOAD (option R) statement to start a program executing as
the operator is not allowed to input any direct command statements.

In RUN-ONLY, the BREAK key is disabled and BASIC is inhibited from accepting
direct statements (data is OK) from the operator. The program has full con-
trol, and must exercise it. A menu program can issue RUN or LOAD (option R)
statements for other BASIC programs, and those programs can do the same to
return to the MENU program or go on to the next program of a sequence. Op-
tionally, a base program may remain in memory at all times, and via CMD"F",
DELETE and MERGE, bring in overlay programs as necessary. Programmers should
carefully study available options under RUN, MERGE, LOAD, and CMD"F
functions.

7.13. Comarisons in the use of the function CMD between NEWDOS/80 and TRSDOS.

1. CMD°A" Not implemented; use CMD"S".

2. CMD"B" Not used on the Model I by NEWDOS/80 nor TRSDOS. TRSDOS'
Model III use is not implemented in NEWDOS/80; use CMD"BREAK,Y/N"

3. CMD"C" This command (1) compresses out all spaces from the program
text, excepting for those within strings, and (2) deletes all remarks

DISK BASIC NON-I/O7-9

from the text, including entirely those lines which are entirely remarks.
The statement CMD"C",S compresses out all spaces from the program text,
excepting those within strings and remarks. The statement CMD"C",R
deletes all remarks from the text, including deleting entirely those
lines which were entirely remarks.

In some cases, GOTO, GOSUB, etc. refer to a text line that is
entirely remarks and the deletion of remarks from the text will
cause these referenced lines to disappear. The programs should be
altered to have these GOTOs and GOSUBs refer to text lines that are
not entirely remarks. After remarks have been deleted from a
program, execute RENUM U to determine if there are any undefined
line numbers resulting.

Though BASIC is designed to ignore spaces that are not in text
remarks or character strings, the removal of spaces from text can
still cause confusing situations. For example, compressing

10 FIELD 1,20 AS C$
20 IF F OR D THEN 10

to
10 FIELD1,20ASC$
20 IFFORDTHEN10

will cause syntax errors to occur for both lines during execution
after either (1) the program has been stored in ASCII and then read
back in or (2) the lines have been edited. To avoid these problems
that may exist for weeks or months before either of the above two
conditions occur, the CMD"C" function automatically unpacks each
compressed text line, packs it again and compares the new packing
with the old that existed before the spaces were compressed out. For
any text line where the two packings are different in any way, the
spaces are restored into that text line (remarks, if deleted, remain
deleted) and the line's number is listed on the display. The user
may then inspect these lines and remove spaces that won't affect the
program. For any given program, there should be very few lines
rejected by CMD"C".

4. CMD"D" TRSDOS' meaning is not implemented on the Model III under
NEWDOS/80; use CMD"doscmd". On the Model I, CMD"D" still invokes DEBUG
though 123 is the preferable method.

5. CMD"E" Displays the DOS error messaged associated the latest DOS
error encountered by BASIC.

6. CMD"F" Not used in TRSDOS. In NEWDOS/80, there are two formats:

1. CMD"F",fc used when the function code fc must be findable by
REF, RENUM and others.

2. CMD"F=fc" used when the function code fc is not to been seen by
REF, RENUM, etc. or where the specially defined function code could
be confused by the normal text packing routine.

These CMD"F" functions are specified in sections 7.15. thru 7.20.

DISK BASIC NON-I/O 7-10

7. CMD"I" Not used on the Model I by either NEWDOS/80 or TRSDOS.
TRSDOS' Model III use is not implemented in NEWDOS/80; use CMD"dos-cmd".

8. CMD"J" Calendar Date Conversion.

CMD"J",date1,date2

converts the expression date1 to the appropriate format and stores
the result in the string variable date2. If date1 is in mm/dd/yy
format, date2 is stored in ddd format and if date1 is in -yy/ddd
format, date2 is stored in mm/dd/yy format where:

mm is a two digit month value between 01 and 12.
dd is a two digit day-of-the-month value between 01 and 31.
ddd is a three digit day-of-the-year value between 001 and 366.
yy is a two digit relative year-within-century value between 00
and 99. For leap year conversions, yy is assumed to be in the 20th
century, i.e., from 1900 to 1999.

9. CMD"L" TRSDOS Model III meaning not implemented in NEWDOS/80; use
CMD"LOAD,filespec". This function is not used on the Model I.

10. CMD"O" Array Sort; see discussion below (section 7.21.) for
CMD"O".

11. CMD"P" Not used on the Model I. TRSDOS' Model III meaning is not
implemented in NEWDOS/80; use PEEK(&H37E8) to obtain the 0 - 255 value
for the current printer status.

12. CMD"R" TRSDOS' Model III meaning is not implemented in NEWDOS/80;
use CMD"CLOCK,Y". On the Model I, CMD"R" still reenables the interrupts
as before.

13. CMD"S" Exit BASIC and return to DOS READY state. However, if the
command is of the form CMD"S=doscmd", then the following occur:

1. The DOS command doscmd is moved into the DOS command buffer.

2. BASIC exited.

3. The DOS command placed into the DOS buffer is executed imme-
diately without an intervening DOS READY.

4. When that command is completed, control returns to DOS READY and
not to BASIC.

14. CMD"T" TRSDOS' Model III meaning is not implemented in NEWDOS/80;
use CMD"CLOCK,N". On the Model I, CMD"T" still disables the interrupts as
before.

15. CMD"X" Not used on the Model I by NEWDOS/80. TRSDOS' Model III
meaning is not implemented; use the REF command.

16. CMD"Z" Not used on the Model I by NEWDOS/80. TRSDOS' Model III
meaning is not implemented; use CMD"ROUTE,...".

DISK BASIC NON-I/O7-11

7.14. CMD"doscmd"

If the string expression associated with the CMD function has two or more
characters and does not start with either "S=" or "F=", then the string is
assumed to be a command to be executed by DOS. BASIC moves the command to
DOS' command buffer, sets DOS to MINI-DOS mode, and calls DOS to execute the
command via 4419H, DOS-CALL. Upon return, BASIC turns off DOS' MINI-DOS mode.
If DOS has rejected the command because it was not legal under MINI-DOS,
BASIC then attempts to reissue the command to DOS under normal mode by doing
the following:

If approximately 8,000 bytes are not available between the top of BASIC's
array areas and the bottom of BASIC's stack (which is immediately below
the string area), BASIC declares OM ('OUT OF MEMORY') error and
terminates the current statement. If the space is available, BASIC moves
all of memory from 5200H to 70FFH to that free area, sets itself to use
stack area 7000H-71FFH and computes a checksum over the region from 7100H
to the top of BASIC's memory (takes about 2 seconds). Then it calls DOS
to execute the DOS command. Upon return from DOS, BASIC moves the saved
region back to 5200H-70FFH and recomputes the checksum (again, another 2
seconds). If the check fails, this means that the DOS command executed
has altered some of BASIC's bytes; BASIC cannot continue and exits to DOS
with 'BAD MEMORY' error.

Whichever way the command was executed, BASIC now checks the return code from
DOS. If an error occurred and the error message has already been displayed,
BASIC terminates the CMD"doscmd" statement with 'PREVIOUSLY DISPLAYED ERROR'
error state. If a DOS error occurred, BASIC calls 4409H to display the DOS
error message and terminates the CMD"doscmd" statement with 'DOS ERROR' error
state. If no error occurred, BASIC continues with normal processing.

Any DOS library command or assembly language program (that will execute using
only the 5200H - 6FFFH region and/or a non-BASIC, non-DOS region of main mem-
ory) can be executed in this fashion. SUPERZAP and DIRCHECK are two programs
that may be executed through CMD"doscmd". FORMAT and most forms of COPY can
be done; however, single drive, two diskette copies cannot be done as they
require the maximum amount of memory. Also, don't specify the UBB parameter
in COPY.

Remember, DOS commands are limited to 80 characters, including the ENTER
character that BASIC will append to the doscmd string when moved to the DOS
command buffer.

User programs are warned to leave the Model I memory area 4080H -41FFH (Model
III area 4080H - 41E2H) alone except where alteration is in conformance with
BASIC's current uses.

CMD"BASIC" should never be executed. If for some reason the programmer wants
to exit BASIC and return, use CMD"S=BASIC".

Almost all DOS commands may be executed via CMD"doscmd". Examples:

1. CMD"DIR 1" list a directory
2. CMD"COPY XXX:0 YYY:1" copy a file
3. CMD"COPY 0 1 07/10/81 FMT" full diskette copy, with format
4. CMD"SUPERZAP" executes program SUPERZAP and return to BASIC
5. CMD"DO CHAINFIL" perform chain file functions and return

DISK BASIC NON-I/O 7-12

7.15. CMD"F=POPS", CMD"POPR" and CMD"F=POPN"

If the statement is CMD"F=POPS", then all returns and FOR-next controls are
purged, leaving BASIC with no outstanding returns or nexts. When done, execu-
tion continues with the next statement. The purpose of this statement is to
allow the programmer to 'bail-out' of complex coding and return to BASIC's
first level. This avoids leaving residual information in BASIC's control
stack which on recursive returns to the high level without CMD"F=POPS" will
eventually cause program failure.

If the statement was CMD"F=POPR", then the current GOSUB level is purged
along with any outstanding FOR-NEXTs for that level. This is the same as
return except control does not pass to the statement following the associated
GOSUB, but instead passes to the statement following the CMD"F=POPR"
statement.

If the statement is CMD"F=POPN", then the most recently established
FOR-NEXT's control data is purged. This is the same as 'NEXT' where the loop
limit is exceeded. Execution continues with the statement following the
CMD"F=POPN" statement.

If the statement is CMD"F=POPN" vu where vn is a variable name, the FOR-NEXT
loop associated with vn is purged along with any other FOR-NEXT loops estab-
lished while vn's loop was outstanding. Execution is the same as for 'NEXT
vn' when the loop is to end. Execution continues with the statement following
the CMD"F=POPN" vn statement. The purpose of CMD"F=POPN" is to allow breaking
out of a loop while not leaving residual loop control information that can
confuse the programmer if he/she subsequently uses FOR-NEXT variables in
reverse order.

7.16. CMD"F=SASZ"
Change BASIC's string area size without affecting or clearing the variables.

CMD"F=SASZ",exp1

allows the string area size to be changed without clearing the variables.
exp1 must be a value large enough allow the string area to contain the
strings that it contains when the statement is executed. An error will be
generated if exp1 is too small or is too large (i.e., will cause overlap with
the text, scalar and array areas). Example:

CMD"F=SASZ",4000

7.17. CMD"F=ERASE" and CMD"F=KEEP"
Selective clearing of BASIC variables.

CMD"F=ERASE",vn1,vn2,vn3... allows the specified variables to be
cleared. If a specified variable is within an array, the entire array is
cleared. The size of the string area is not changed. This statement
should be used when an array is no longer needed or the user wishes to
redimension it by a subsequent DIM statement. This statement may be
multi-text lines as described for CMD"F=KEEP" below.

DISK BASIC NON-I/O7-13

CMD"F=KEEP",vn1,vn2,vn3... causes all variables to be cleared except
those specified and except specially defined variables such as those de-
fined by a DEFFN statement. The size of the string area is not changed.
If no variable names are specified, all variables are cleared, except the
special ones. If a specified variable name is within an array, the entire
array is exempted from the clear. The statement may specify as many var-
fable names as desired with overflow from one text line to the next non-
comment text line taking place whenever the last variable name of a text
line is followed by a comma. Example:

CMD"F=KEEP",A$,B%,C,D#, 'statement first line
E!,F,G$, 'statement 2nd line
REM this line is bypassed
H!,I 'statement last line

7.18. CMD"F",DELETE
Dynamic deletion of text lines:

CMD"F",DELETE ln1-ln2

This statement allows the text lines from and including any line numbered IS
to and including any line numbered ln2 to be deleted during program
execution. All variables are retained, excepting that DEFFN variables for
DEFFN statements in the delete range are cleared. The string area size is not
changed. Any string variable whose current string was actually in the deleted
text area has that string moved to the string area. CMD"F",DELETE must not be
executed as a direct statement, must not be contained in a DEFFN statement, a
subroutine or a FOR-NEXT loop has a POPS function is implicitly performed),
must be the last statement on its text line and must be followed by the text
line where execution will continue after the delete. Example:

100 CMD"F",DELETE 10500-15000
110 X=1 execution continues here after the DELETE is completed

7.19. CMD"F=SWAP"
Swapping of variable contents:

CMD"F=SWAP",vn1,vn2

This function swaps the value of variable vnl with that of variable vn2. Both
variables must be of the same type, i.e., both strings, both single precision
floating point, etc. Example:

CMD"F=SWAP",A$,B$

DISK BASIC NON-I/O 7-14

7.20. CMD"F=SS"
BASIC single stepping:

1. CMD"F=SS" turn on single stepping
2. CMD"F=SS",ln1 single stepping starts at line ln1.
3. CMD"F=SS",N turn off single stepping.

The BASIC programmer may now single step through program execution. Using
either format 1 or 2 above sets BASIC into single step mode, though for
format 2, actual single stepping does not start until text line ln1 is the
next line to be executed. A single BASIC text line is executed for each step,
and between steps the line number for the next line to be executed is
displayed in '@nnnnn' format in the display upper right corner to indicate
that BASIC is waiting for the operator to respond. Responding ENTER causes
line nnnnn to be executed and then BASIC waits for user response again.
Responding BREAK causes execution to be broken in the normal manner though it
should be noted that the line number the BREAK shows is for the line just
executed or being executed while the '@nnnnn' display is for the next line to
be executed. If the user does not change text during BREAK, the program may
be continued via CONT; in this case, the '@nnnnn' display will immediately
reappear without execution of a line. Pressing ENTER will then execute the
line. While in BREAK, the operator may turn single stepping on or off as
desired without affecting the ability to CONT. If the BREAK occurs before RUN
or LOAD,R executes one text line, CONT will not work.

Single stepping or the scheduling of the single stepping to start when a
particular text line is encountered remains in effect until either
CMD"F=SS",N is executed to turn it off or until a format 2 type stepping
command is executed, wherein stepping goes off until the specified line is
encountered. The execution of RUN, LOAD, NEW, etc. does affect single
stepping state.

7.21. CMD"O"
The main memory BASIC array sort has 2 formats:

1. 1. CMD"0",n,av1[,av2,....1 (direct sort)
2. 2. CMD"0",n,*iav1,av2[,av3,...] (indirect sort)

In explaining this sort, the term REN is used and is defined to mean a
Relative Element Number identifying an array element. The elements within any
BASIC array, regardless of dimension, are integer numbered from 0 up. If an
array has only one dimension, then an element's REN is simply the value of
its subscript and if you use only single dimensioned arrays, you can ignore
the rest of this paragraph. However, if you use multi-dimensional arrays,
then you should know which method to use to increment array subscript values
in order to extract elements in the sorted order. CMD"O" does not care what
dimension the arrays have; it simply counts off the array elements in the
order BASIC stores them in main memory. You, the programmer, do care as you
must use subscripts in order to access the array elements. For
multi-dimensioned arrays, the rule for computing the REN is complex and can
best be illustrated by a three dimension array example using two statements:

DIM A(R1,R2,R3)
Y = A(X1,X2,X3)

DISK BASIC NON-I/O7-15

where the REN of this element is computed as X1+X2*(R1+1)+X3*(R1+1)*(R2+1).
If the array had only two dimensions, then the REN would be X1+X2*(R1+1),
and, of course, if the array had only one dimension, the REN would simply be
X1.

If the CMD"O" statement specifies more than one array, excluding iav1, then
the RENs for the first sort item in each array, excluding iav1, must be
equal.

The sorting order used has one level for each array specified, excluding the
iav1 array, with highest to lowest level in the order, left to right, of the
array variables in the CMD statement. Within each level, the normal sort
order is ascending ASCII (actually hexadecimal) numeric value for character
string arrays and most negative to most positive value for numeric arrays.
However, if the array variable in the CMD statement is prefixed with a minus
sign (example: -A#(0)), then the order of sort within that level is
descending ASCII (actually hexadecimal) numeric value for character string
arrays and most positive to most negative value for numeric arrays. A null
compare string character is considered to have a numeric value less than

Normally in character compares, the entire string is used in the compare.
However, if the array variable in the CMD statement is suffixed with a field
of the form (x,y) (Example: A$(1)(5,4)), then the compare starts with the
xth character of the string and compares using only y characters.

n is the number of elements in each of the arrays participating in the sort.
Only n elements from each array participate in the sort. Elements of an array
below or above the n elements specified do not participate. If n is a zero
value, then for the sort, n is set to the number of elements in first array
specified from and including the element specified through and including the
last element of the array.

If the number of elements in any array from and including the specified
element to and including the array's last element is less than n, FC error is
declared.

A maximum of 9 arrays may be specified. All array variable subscripts, except
for the indirect array if specified, must evaluate to the same REN value.

Format 1 is a direct sort meaning that the elements of all 1 to 9 arrays are
moved around to conform to the desired sort order.

av1 must be specified; av2 and up are optional.

The resulting order of the n elements in each array is the same for each
array (i.e., the arrays are not sorted independently). Thus, if the jth
element of array 1 is sorted into the kth element slot, then for each of
the other arrays, if any, the jth element is also placed into the kth
element slot.

Format 1 is compatible with TRSDOS Model III BASIC CMD"O" if and only if
only one array variable is specified, it is for a string array and n is
an integer variable.

Format 2 is an indirect sort. In this sort, only the n elements of array iav1
are altered; the other arrays are not changed in any way. The intent of

DISK BASIC NON-I/O 7-16

format 2 is to allow a sorted sequence to be determined without actually
changing the arrays supplying the sort values. A user may have a group of
data records spread across a number of arrays such that a record consists of
one element from each array, with the REN of each of those elements making up
the record equaling the record number. By using format 2 with the indirect
array, the user may effectively sort the records using a subset of the items
as the sort criteria and without actually rearranging the order of the
records, thus leaving them in record number order.

Format 2, as opposed to format 1, is indicated by specifying the iav1
array variable, prefixed by an * .

iav1 must be an integer array variable.

av2 must be specified; av3 and up are optional.

The n consecutive elements starting at iav1 are initialized with the RENs
corresponding to the n consecutive elements of array av2 (which also
correspond to the RENs for the other arrays, if any).

During sorting only array iav1 is altered; , arrays av2 and up are not
altered.

Upon completion, the n elements of array iav1 are in the desired sorted
order such that by using successive values out of array iav1 as sub-
scripts, the user may access elements from any of the other arrays (that
are single dimensioned) in that sorted order. Accessing multi-dimensioned
arrays is more complex and is left as an exercise for the more advanced
user.

Example program using a number of sorts:

10 DIM NM$(200),AM!(100),LN$(l00),IX%(100),ZC!(50),L$(50)
30 X=150
40 CMD"O",X,NM$(0)
60 CMD"O",X,-NM$(25)
70 CMD"O",0,-AM!(1),LN$(1)(5,3)
80 CMD"O",100,*IX%(0),ZC!(1),L$(1)

At line 40 the first 150 elements of array NM$ (elements NM$(0) to NM$(149))
are sorted in ascending order. If any of the strings are null, they will
appear first in the resulting array. The last 51 elements of array NM$
(elements NM$(150) to NM$(200)) do not participate in the sort and are left
unchanged.

At line 60 elements NM$(25) through NM$(174) are sorted into descending
order, with null strings, if any, appearing as the end elements of those 150
elements. The first 25 and the last 26 elements of the array do not
participate in the sort.

At line 70 the AM! and LN$ arrays are both sorted, both in the same order
which is first by descending order of AM! array values and then, where AM!
array values are equal, by ascending order of LN$ array values where only the
5th, 6th and 7th characters of the LN$ array elements participate in the sort
determination. If a LN$ array element has less than 5 characters, it is
considered a null for sort determination purposes. AM!(0) and LN$(0) do not

DISK BASIC NON-I/O7-17

participate in the sort. Since the number of elements to be sorted was
specified as 0, the number of elements to be sorted was taken as 100, the
number of elements in the AM! array from and including the AM(1) element to
and including the last element of the array.

Line 80 contains an indirect sort. In this sort, the first 100 IX% array
elements are initialized sequentially with REM numbers from 1 to 100 with
IX%(a) = 1 and IX%(99) = 100. These RENs are used as subscripts to index into
the ZC! and L$ arrays. The sort is in ascending order, first by ZC! array
values and then, where the ZC1 array values are equal, by L$ array values.
None of the elements of the LC1 and L$ arrays are changed in any way. Instead
of moving the ZC! and L$ array elements, only the corresponding REM in the
IX% array is moved. Upon completion of the sort, the REN in IX%(O) can be
used as a subscript to index the first-in-sorted-order element from each the
ZC! and L$ arrays, and the REN in IX%(99) can be used to index the
last-in-sorted-order element from each the ZC! and L$ arrays. Lastly,
remember that elements IX%(100), ZC!(0) and L$(0) did not participate in the
sort in any way.

7.22. RENEW
Reinstate a program deleted by the command NEW.

RENEW

The BASIC direct command RENEW reinstates the BASIC program text ostensibly
deleted by a just given NEW command. All that RENEW does is set the first
byte of the text area non-zero, reestablishes the text forward queue pointers
and performs CLEAR. The previous program should thus be reinstated in the
text area, available for editing and executing. However, if at least one text
line was created or loaded since NEW, then the previous text is not
reinstated. Furthermore, if, during this BASIC invocation, the text area
never contained any text, RENEW will never the less assume that there is text
in the text area and attempt to reinstate it with very disastrous affects to
BASIC.

DISK BASIC I/O8-1

8. BASIC DISK I/O ENHANCEMENTS AND DIFFERENCES

8.1. Introduction
This chapter deals with the substantial enhancements and some differences in
the NEWDOS/80's BASIC's file handling over that offered by NEWDOS/21, TRSDOS
2.3 for the Model I and TRSDOS 1.3 for the Model III. The statements made in
section 7.1 apply to this chapter as well.

These I/O enhancements are more difficult to understand than they are to use,
something like electricity which few understand and everybody uses. In the
long run, the enhancements will make I/O programming easier, but the user
must remember that since TRSDOS does not have these enhancements, your
programs will no longer run on TRSDOS.

In NEWDOS/80 version 1, appendix A of the documentation and an executable,
heavily documented BASIC program named SAMPLE01/BAS were included as examples
and non-specification discussions of these I/O enhancements. In version 2,
SAMPLE01/BAS has been dropped from the diskette and Appendix B added
containing 18 example programs on marked and fixed item file useage.

Chapter 8 is intended as the specifications for these enhancements;
appendices A and B contain supplementary discussion and examples. If there is
a conflict between chapter 8 and appendices A and B, chapter 8 governs.

Many terms used in this chapter are defined in the glossary in chapter 10,
which the user will need to refer to. The reader should read through this
chapter and appendices A and B at least twice before bogging down trying to
understand any particular statement.

8.2. File Type
To the previously existing DISK BASIC file types, sequential which will be
called print/input, and random which will be called field item, two other
file types have been added: marked item, which has three subtypes MI, MU and
MF, and fixed item, which has two subtypes FI and FF.

Print/input (sequential) disk files and field item (random) disk files are
well specified for the Model I in the TRSDOS manual, chapter 7 and for the
Model III in the TRSDOS manual, part III. The user is expected to have
studied the appropriate section before proceeding further with this chapter
of the NEWDOS/80 documentation. If necessary, run some test programs to gain
proficiency.

A field item file (known in TRSDOS as a random file) has all of its re-
cords the same length. This length may be from 1 to 256 bytes. If the
record length is other than 256, the BASIC initialization sequence (see
section 7.3) must specify the number of fileareas to be allocated and
that number must be suffixed with the character V. Example:

BASIC,3V

will cause BASIC to allocate three fileareas with two buffers each, the
first to be used in conjunction with the FIELD statement and the second
to serve as a full sector buffer. Remember, this special V suffix is to

DISK BASIC I/O 8-2

be used only if the intention is to use a field item file (TRSDOS random)
with a record length less than 256; otherwise the extra 256 bytes alloca-
ted to each filearea is wasted. The open statement used where the record
length is less than 255 is:

OPEN "R",fan,filespec1,lrec1

where lrec1 is the logical record length and has a value 1 - 256.

8.3. File type differences
The essential differences between the four file types are as follows:

Print/input files can only be used sequentially; field item, fixed item
and marked item files can all be used either sequentially or randomly.

Print/input files are stored in all ASCII character format, converting
all numeric data from binary bits to decimal characters. Field item,
fixed item and marked item files all store numeric data in the binary
forms, thus usually saving disk space and data conversion time.

Print/input files are written to using the PRINT statement which is
cumbersome to use because of the need to use the 5 character sequence
;","; to separate two string items. Field item, fixed item and marked
item files are written to using the PUT statement with implied separation
of file items taken care of by the FIELD statement for field item files,
by the implicit or explicit item lengths specified in the IGEL for fixed
item files and by the item marker for marked item files.

Print/input files are read using the INPUT statement while field item,
fixed item and marked item files use the GET statement.

Field item files require that data be moved into the record buffer before
execution of the PUT statement. This is done via the RSET or LSET func-
tion and in the case of numeric values, also with MKD$, MKI$ or MKS$
function. This explicit conversion is not needed for print/input, fixed
item and marked item files.

Field item files require that numeric data input from the file be
converted from string representation to numeric via the CVD, CVI or CVS
function before it is used. This is not needed for print/input, fixed
item and marked item files.

Print/input files allow a record length of any size. Field item files
allow a maximum record length of 256. Fixed item and marked item allow a
maximum record length of 4095 bytes.

Print/input file processing transmits strings to the file without change,
but truncates leading spaces from string items when inputted from the
file. Strings in field item files are padded on either the left or the
right with spaces as necessary during the associated LSET or RSET.
Strings in fixed item files are padded on the right with spaces as
necessary to fill out the item to its specified length or are truncated
on the right if the actual string length exceeds the length allowed the
file

DISK BASIC I/O8-3

item. Strings in marked item files are not padded, though the string may
be truncated on the right if it exceeds the maximum characters allowed
for that item. Except for this truncation, which must be specified by the
programmer, marked item file processing is the only one of the 4 that
transmits strings completely unchanged from what they were in the
corresponding BASIC variable.

8.4. Components of GET and PUT
GET and PUT statements execute in two distinct phases in the following order:

1. File positioning phase. The position within the file is set according
to the file position parameter, the second parameter, of the GET or PUT
statement.

2. Data transfer phase. The data is transferred from main memory to the
file (PUT statement) or from the file to main memory (GET statement).

Before proceeding, it is necessary to define three terms used within GET and
PUT statements, one that existed in a more limited form in field item file
GET and PUT statements and two that are new.

8.4.1. fp File position. For each GET or PUT operation (see sections
8.8 and 8.9), the file is initially positioned according to the fp
specification. fp is one of the following forms:

8.4.1.1. null If REMRA is valid and file record segmented, the
filearea is advanced to the next record; otherwise fp = null performs as
fp = *. Example:

PUT 1,,1000

8.4.1.2. * The filearea position is unchanged. fp = * cannot be
used to advance from one record to the next for a record segmented file.
Example:

GET 1,*,l000

8.4.1.3. # The filearea is repositioned to REMRA (see section
8.10). This allows the previously processed record to be processed again.
Error if REMRA currently invalid. Example:

PUT 1,#,1000

8.4.1.4. $ The filearea is repositioned to REMBA (see section
8.10). This allows a return to the positioning of the previous GET/PUT
with fp = null, *, #, $, rn, or !rba. Error if REMBA currently invalid.
Example:

GET 1,$,1000

DISK BASIC I/O 8-4

8.4.1.5. Z See section 8.11 for pseudo FIELD statement
discussion.

8.4.1.6. & See section 8.9.6 for PUT, fan,&' discussion.

8.4.1.7. && See section 8.9.7 for PUT fan,&&

8.4.1.8. !rba rba is an expression evaluating to a RBA equalling
the desired relative byte position within the file, range to 16,777,215.
GET or PUT data transfer starts at the specified location in the file. If
the file is record segmented, !rba is assumed to specify a record start
position. Example:

GET 1,11357,1000

********* Use of !rba is extremely powerful and when improperly used,
quite disastrous!!!!!!!!

********* the expression for fp cannot contain a function, such as LOC,
that refers to a filearea.

8.4.1.9. !% Same concept as !rba except the current EOF value is
used as the RBA. Example:

GET 1,1%,1000

8.4.1.10. !$rba Position the file to relative file location rba. No
data transfer is done. See GET discussion, section 8.8.6. Example:

GET 1,1$1354

8.4.1.11. !$% Same concept as !$rba except the current file EOF
value is used as the RBA. Example:

GET 1,1$%

8.4.1.12. !#rba Set the expression rba as the new EOF value. See PUT
discussion, section 8.9.9. Example:

PUT 1,1#1354

8.4.1.13. rn An expression that evaluates to an integer in the
range 1 - 32767 representing the target record's number within the file.
The filearea is positioned to the start of the record's first item. The
filearea must be open with m = I, R or D and with ft, if specified, = FF
or MF. Example:

GET 1,30

8.4.2. IGEL Item Group Expression List. A list of expressions
corresponding to a group of file items. An IGEL is a series, terminated by a
semicolon, of one or more expressions, separated by commas, corresponding to
successive file items, starting at the current file position which was
established by the GET or PUTS file positioning parameter. If, while
searching for a separating comma, the terminating semicolon or the start of

DISK BASIC I/O8-5

an expression, a remark or EOL is encountered, the search goes on to the next
BASIC statement. The purpose of an IGEL is to serve as the link between a
group of file items and a group of BASIC variables or expressions during the
execution of a GET or PUT statement for marked or fixed item file processing.
Examples of IGELs (coded in BASIC) are:

1. (30)LN$,(15)FN$,AM!,DT#(X);
2. "3", AN%, NM$;
3. (32)A$(X,Y), B%(2+X), C!, E$, '1st line
 K#,FS$; '2nd line

If an error is encountered while processing an IGEL, the error line number
will refer to the line containing the associated GET/PUT statement rather
than the actual error line within the IGEL.

8.4.3. IGEL expression One of the expressions of an IGEL. For PUT
statements, an IGEL expression specifies the value to be assigned to the
current file item. For GET statements, an IGEL expression specifies the
variable to receive as its value the value of the current file item. An IGEL
expression is of one of the following forms:

1. exp
2. (len)exp
3. (len)$ fixed item files only
4. (len)#
5. a null expression

where:

8.4.3.1. exp is the main portion of the IGEL expression. Normally,
exp names a BASIC variable, but in the case of PUT to a marked item file,
exp can be almost anything legal on the right side of a LET statement.
When exp is a named variable, either a scalar or an array, it is STRONGLY
recommended, though not required, that the variable name be suffixed with
one of the 4 type symbols ($, X, 1, or For example, we STRONGLY
recommend:

 A$,BX(X,Y),C1,D#;
instead of
 A,B(X,Y),C,D;

This recommendation does not apply to subscript variables (i.e., X and Y
in the above example).

8.4.3.2. (len)exp is a prefixed expression with len itself an
expression evaluating to an integer 0-255. (len)exp must be used only for
IGEL expressions that are strings.

1. For marked item files, len is the maximum number of string
characters sent to the file during PUT or received from the file
during GET. If the actual number of characters is less, then only
the lesser number of characters is transferred. For marked item
files, use of the (len)exp format instead of the exp format for
string expressions is optional, though for MF files, use of the
(len)exp is recommended.

DISK BASIC I/O 8-6

2. For fixed item files, the (len)exp format must be used for string
expressions in the IGEL as len specifies the exact number of
characters a string file item has or is to have. During PUT
statement data transfer, if a variable's string has less than len
characters, the file item (not the variable) is padded on the right
with spaces as necessary. If the variable's string has more than len
characters, the excess characters on the right are not transferred
to the file item. During GET statement data transfer, a variable's
string receives len characters from the file.

3. Example of IGEL using (1en)exp expressions:

(30)LN$,(20)FN$,AN%,DP#,(2)CD$(X);

8.4.3.3. (len)$ This expression is legal for fixed item files
only. len indicates the number of file bytes to be bypassed. For a GET
the specified number of file bytes are bypassed. For a PUT on an existing
record, the specified number of file bytes are bypassed and are not
altered. For a PUT for a new record, (len)$ defaults to (len)#. Example,
in the following IGEL, the 1st 10 bytes are skipped, the next 12
transmitted, the next 17 are skipped, and the last 8 are transferred.

(10)$,AN%,(10)ST$,(17)$,DP#;

8.4.3.4. (len)# For fixed item files, for a GET, (lend operates
the same as (len)$ and for a PUT sends len zero bytes to the file. For
marked item files, for a GET, (lend bypasses the current file item and
for a PUT, sends to the file a character string of len nulls (hex 00
characters). Example:

(10)#,AN%,(10)ST$,(17)#,DP#;

8.4.3.5. A null expression A null expression can only be used in
marked item file GET statement IGELs. A null expression causes bypassing
of the corresponding file item. For example, the first, second and fourth
items are bypassed in the execution of the statement:

GET 1,,,,,X!,,A$;

During the processing of an IGEL, if an error occurs particular to one of the
expressions of the IGEL, the error message will be prefixed with the
expression's position within the IGEL. For example, if the 4th IGEL
expression is in error, the error message will be prefixed with a 4.

DISK BASIC I/O8-7

8.5. Fixed item file characteristics

1. Contains zero or more items.

2. The type and length of each item is determined by the GET's or PUT's
associated IGEL, and is not determinable from the file itself. This is a
basic difference between fixed item files and marked item files.

3. A file may be subdivided into records all of the same length.

4. Maximum length of records is 4095 bytes.

5. The number and characteristics of items of a record is dependent
solely upon record length and the IGEL(s) used to GET or PUT the record.

6. An I/O link to and/or from a fixed item file is created by BASIC
statement OPEN with ft = FI or FF.

7. Via the GET statement, the contents of fixed item file items are
moved into the BASIC variables specified by the IGEL.

8. Via the PUT statement, fixed item file items are created or replaced
from the BASIC variables specified in the IGEL.

9. BASIC statement CLOSE terminates an I/O link between the program and
a fixed item file.

10. No disk space is skipped between successive items of a file or
between the end of one record and the beginning of the next.

11. When an FF file record is created, any unused space at the end of
the record is filled with zero bytes.

8.6. Marked item file characteristics

1. Contains zero or more items.

2. A marked item file item always starts with a control (or marker) byte
followed by zero or more additional control bytes followed by zero or
more data bytes.

3. Marked file items have the following formats, depending upon the
hexadecimal value of the 1st control (or marker) byte.

1. 80-FF 0-127 byte binary string follows.

2. 70 SOR (start-of-record). Each record of a MU file (marked
item file segmented into records not all of the same length) starts
with this item.

3. 00 Fill item. Used as necessary to fill out MF or MU file
records.

DISK BASIC I/O 8-8

4. 71 Next byte contains the count (0-255) of binary string bytes
following. This is the only situation (for now) where a second
marker byte is used.

5. 72 Next two bytes are a two's complement binary integer. This
is BASIC's format.

6. 73 Next four bytes are a binary floating point number in
BASIC's format of the form:

1. Three bytes of normalized absolute value mantissa of the
form .mmmmm where mmmmm is expressed in these bytes in ascending
order of magnitude:

1. Inter-byte, left to right.

2. Intro-byte, right to left. Excepting that the highest
ordered mantissa's bit's position, since it's mantissa
value is always = 1, is used instead to contain the man-
tissa sign, 0 = + and 1 = -.

2. The 4th byte contains the base two exponent, biased 128,
except if the byte = 0, then the floating point number = regard-
less of the contents of the other bytes.

7. 74 Next 8 bytes contain a binary floating point number of the
same format as for item type '73' excepting that the 1st 7 bytes are
the mantissa and the exponent is in the 8th byte. This is BASIC's
double precision floating point format.

4. A file may be subdivided into records, either all of the same length
(MF file) or of varying lengths (MU file).

5. Maximum length of a file record is 4095 bytes. This includes all
record control, item control and data bytes.

6. If the file is divided into records not all of the same length (a MU
file), then each record of the file starts with the SOR item
automatically supplied by BASIC.

7. Successive records in the file may contain differing numbers of
items. This will occur where the programmer has multiple record types
within the file. For files with fixed length records, care must be taken
to avoid record overflow.

8. Relatively positioned items within records of the file may differ as
to type from one record to another. This will occur where the programmer
has multiple record types within the file.

9. An I/O link to and/or from a marked item file is created by the
BASIC statement OPEN with the ft parameter = MI, MU or MF.

10. Via the GET statement, the contents of marked item file items are
moved into the BASIC variables specified in the IGEL.

DISK BASIC I/O8-9

11. Via the PUT statement, marked item file items are created from BASIC
variables and/or BASIC expressions specified in the IGEL.

12. BASIC statement CLOSE terminates an I/O link between the program and
a marked-item file.

13. No disk space is skipped between successive items or records of a
marked item file. However, SOR and fill items are inserted as necessary.

8.7. OPEN
DISK BASIC's OPEN statement has been modified to handle the

following formats:

1. OPEN m,fan,filespec
2. OPEN m,fan,filespec,len
3. OPEN m,fan,filespec,ft
4. OPEN m,fan,filespec,ft,len

where:

8.7.1. See glossary for fan and filespec definitions. Examples of the four
formats:

OPEN "I",1,"XXX/DAT:1"
OPEN "R",2,"XXX/DAT",128
OPEN "0",1,"XXX/DAT:0","MU"
OPEN "D",3,"XXX/DAT","MF",71

8.7.2. Format 1 above is used for print/input and field item files. Format
2 is used for field item files. Format 3 is used for FI, MI and MU files.
Format 4 is used for MU, MF and FF files.

8.7.3. m specifies the operational mode for the filearea and is an
expression evaluating to a string equal to one of the following:

1. I The filearea is open to the file for input operations only (INPUT
if ft not specified - GET if ft specified). The filearea is positioned to
the start of the file.

2. O If the file does not exist, it is created. The filearea is opened
to the file for output operations only (PRINT if ft not specified - PUT
if ft specified). EOF is set = 0, and the filearea is positioned at EOF.

3. E Same as "O" except EOF is not changed. This allows addition to an
existing sequential file.

4. R If the file does not exist, it is created. The filearea is opened
to the file for GET and/or PUT operations. EOF is not changed, file is
positioned as for I. If a subsequent PUT specifies a record at or beyond
EOF, the file is automatically extended to include that record.

DISK BASIC I/O 8-10

5. D Same as R except that the file must already exist and a PUT for a
record at or beyond EOF is treated as an error condition.

8.7.4. ft Specifies the file type and is an expression evaluating to a
string equal to one of the following:

1. FI A fixed item file not record segmented. len must not be
specified.

2. FF A fixed item file of fixed length records. len must be specified.

3. MI A marked item file not segmented into records. len must not be
specified. Items within a MI file cannot be updated.

4. MU A marked item file segmented into records of varying lengths,
where the length is determined by searching for either EOF or the next
record's SOR item. len is optional and if specified is used as a maximum
allowable length for the MU file's records. AMU file record may be
updated provided the record length is not increased beyond its original
value. If the record is shortened, it is filled out with fill items.

5. MF A marked item file segmented into fixed length records. len must
be specified.

8.7.5. If ft is specified, the following apply:

1. If a GET statement is to actually transfer data from the file to BASIC
variables, then the GET statement must specify either IGEL or IGELSN.

2. If a PUT statement is to actually transfer data from BASIC variables
or expressions, then the put statement must specify either IGEL or
IGELSN.

3. BASIC statement FIELD must not be used.

4. The program must not alter information within the filearea's I/O
buffer, and must not rely upon values in that buffer or in the LRECL,
NEXT or EOF fields of the FCB.

8.7.6. If ft is not specified and m = R or D, the following apply:

1. The file is a field item (random) file with specifications the same as
for Model I TRSDOS 2.3 (Model III TRSDOS 1.3) except as otherwise noted.

2. FIELD statements must be used for proper overlay of BASIC variables
into the filearea's buffer. FIELD can process 256 byte records though any
one string defined therein is limited in length to 255 characters. The
number of bytes defined by a FIELD statement is normally equal to len,
should not exceed len and must not exceed 256.

3. GET/PUT statements must not specify either IGEL or IGELSN.

4. If len is not specified, len is assumed equal to 256.

DISK BASIC I/O8-11

5. len must be a value from 1 to 256. If len is less than 256, then BASIC
must have been initialized explicitly specifying the filearea count
suffixed with the character V (see section 7.3).

8.7.7. len An expression evaluating to an integer between 1 and 256
for field item files and between 1 and 4095 for fixed item and marked item
files. For field item, FF or NY files, len is the standard length for records
of the file. For MU files, len is the maximum length allowed for records of
the file. Currently, the file's FPDE does not carry the correct len (LRECL)
value; so the len value, explicit or implied, supplied at OPEN is always
used. Checks on len are done during GET and PUT. For MF and MU files, the
programmer must allow for the following extra bytes in the len calculations:

1. 1 byte for each item (primary item control byte)
2. 1 byte for each string actually containing more than 127 chars.

For MU files, the programmer must allow for the SOR item byte at each
record's start.

The number of bytes assigned to a marked file item equals the number of
marker (or control) bytes (1 or 2) plus the number of bytes used by BASIC to
contain the string or the numeric:

1. Strings: one or two marker bytes plus the actual string length,
allowing for truncation due to expression prefix. The second marker byte
is used only if the string length is greater than 127 bytes.

2. Integers: 1 marker byte plus 2 bytes.

3. Single precision floating point: 1 marker byte plus 4 bytes.

4. Double precision floating point: 1 marker byte plus 8 bytes.

For fixed item files, the number of bytes assigned to each item is determined
from the IGEL as:

1. For strings, for (len)$ and for (len)#, the number specified by the
expression prefix.

2. Integers: 2 bytes.

3. Single precision floating point: 4 bytes.

4. Double precision floating point: 8 bytes.

8.7.8. If the EOF in the FCB is modified by OPEN, a subsequent CLOSE or
PUT,fan,&& statement will update the new EOF into the FPDE even though no
PRINT or PUT statement was executed.

DISK BASIC I/O 8-12

8.8. GET
DISK BASIC's GET statement has been modified to handle the following formats:

1. GET fan Up is null)
2. GET fan,fp 3. GET fan,fp,IGELSN 4. GET fan,fp „ IGEL

where:

8.8.1. fan and IGELSN are defined in the glossary. fp is defined in section
8.4.1 and IGEL in section 8.4.2. Examples of the 4 formats above are:

GET 1
GET 1,30
GET 1,!X,1000
GET 1,,,X%,Y!,Z#,(20)A$;

8.8.2. On successful completion of the GET statement, the filearea is left
positioned at:

1. For marked item file ops, the next item of file.
2. For fixed item file ops, the next byte of the file.
3. For field item file ops, the next record of the file.

8.8.3. If FOR or EOF encountered:

1. For field item file ops, the filearea buffer is set to binary zeroes;
thus giving binary zero value to all data subsequently referenced. No
error occurs.

2. For marked item and fixed item file ops, an error occurs.

8.8.4. If an error is encountered during GET processing, the filearea
control data is reset to the state existing prior to the GET statement. The
resulting contents of the variables-named in the IGEL or FIELD are
indeterminate. After error correction, the statement may be executed again.

8.8.5. If the GET statement specifies IGEL or IGELSN, then successive file
items are processed into successively named variables of the IGEL. For marked
file ops:

1. If an IGEL expression is null, the corresponding file item is
bypassed.

2. An IGEL expression prefix can be used to limit the number of
characters for the string variable. If the file item has less characters,
the string length is set to the lesser value. If the file item has more
characters, the excess characters on the right are bypassed and are not
passed to the variable.

3. As fill items are encountered, they are bypassed.

4. Type-mismatch (TM) error occurs if the named variable and the file
item are type incompatible.

DISK BASIC I/O8-13

5. For a record segmented file, a GET for the first item(s) may be
followed by a PUT for the rest of the item(s).

6. For a record segmented file, record overflow error occurs if GET finds
insufficient items in the record.

7. Except for the limiting effect of the expression prefix, strings are
passed from the file to the variable as is. There is no leading blank
suppression.

For fixed item file ops:

1. For each named string variable, the number of characters specified in
the expression prefix is transferred from the file to the string area.

2. For record segmented files, 'RECORD OVERFLOW' error occurs if GET
finds insufficient bytes in the record.

3. GETS and PUTS for successive data may follow one another at will
providing:

1. The user keeps good track of the current position within the
record.

2. Record boundaries are observed for a record segmented file.

For marked item and fixed item files:

The input of a record's items may be spread across two or more GETS.

8.8.6. The GET statement of the forms:

GET fan,!$rba
GET fan,!$%

allows the programmer to position the file for the next GET, INPUT, PUT or
PRINT statement for that file area. No data transfer is done by this GET
statement. 1$% means the current value of EOF is to be used as the RBA value.
Statements of this form mark REMRA and REMBA invalid. Examples:

GET 1,!$2550 positions the file to RBA 2550
GET 1,!$X positions the file to the RBA value in X
GET 2,!$% positions the file to EOF

DISK BASIC I/O 8-14

8.9. PUT
DISK BASIC statement PUT is modified to handle the following formats:

1. PUT fan (fp = null)
2. PUT fan,fp
3. PUT fan,fp,IGELSN
4. PUT fan,fp,,IGEL

where:

8.9.1. fan and IGELSN are defined in the glossary. fp is defined in section
8.4.1 and IGEL in section 8.4.2. Example codings of these 4 formats are:

PUT 2
PUT 1,X
PUT 3,,1060
PUT 1,RN!,,(20)A$,B%,C!,D#;

8.9.2. On successful completion of the PUT statement, the filearea is left
positioned as done for GET.

8.9.3. If an error is encountered during PUT processing, the filearea
control data is reset to the state existing prior to the PUT statement. The
resulting data in the file is indeterminate, and will probably cause errors
to occur upon a subsequent GET. This should be a problem only when updating
existing records, and if possible a subsequent PUT for that record should be
issued after the error condition has been corrected. To reduce the occasions
of file damage, when the file is opened m = R or D, the IGEL is processed
once in it's entirety to catch non-I/O errors and then again to do the actual
file update.

8.9.4. If PUT specifies IGEL or IGELSN, then the value of successive IGEL
expressions are sent to successive items of the file. For marked item file
ops:

1. SOR and fill items are inserted into the file automatically if and
when necessary.

2. An IGEL expression may be anything legal on the right side of the
equation in a let statement, excepting functions referencing a filearea.

3. Except for the limiting effect of the IGEL expression prefix, the
resulting string is sent to the file as is.

4. Numeric literals or expressions are sent to the file as the BASIC
numeric type they convert to internally in BASIC.

5. For fixed length records and updated variable length records, each PUT
statement replaces that portion of the record from the PUT's file
positioning through the end of the record, using fill items if and as
necessary. ****** CAUTION Any items previously existing in relative
position in the record higher than the last item written by the PUT
action are lost, as all of the record's disk space from the last item of
the PUT to the end of record now contain fill items.

DISK BASIC I/O8-15

6. The maximum theoretical sum of bytes for a record (the sum of bytes
used for control, for numeric data and for strings) can exceed len
(defined in OPEN, section 8.7) so long as the actual number of bytes used
during the record's PUT(s) does not exceed len.

For fixed item file ops:

For each string variable, the number of characters specified in the
required expression prefix is transferred from the variable to the file
by padding with blanks or truncating on the right done as necessary.

8.9.5. For marked item and fixed item files:

1. 1. The output of a record's items may be spread over two or more PUT
statements.

2. 2. Data is moved into the filearea's buffer, but is not actually
written to disk until one of the following occurs:

1. The filearea is closed.

2. The buffer is needed to contain data from another part of the
file.

3. A 'PUT fan,&' or a 'PUT fan,&&' statement is executed.

3. 'RECORD OVERFLOW' error occurs if the allowable record length is
exceeded.

4. See OPEN (section 8.7.7) for discussion of the number of bytes used by
numeric file items.

8.9.6. The PUT statement of the form:

PUT fan,&

allows the programmer to force the write of the filearea's buffer to disk if
that buffer contains data not yet written to disk. If the buffer has no such
data, the statement is ignored. The programmer must remember that actual data
writes to disk for marked item, fixed item and field item (where len less
than 256) files are not necessarily done at PUT time, under the assumption
that more write data may yet appear in the buffer. 'PUT fan,&' forces this
pending data out to disk, and should be used whenever any of the following
conditions exist:

1. It will be some time before the file area will be used again, but the
programmer does not want to issue CLOSE.

2. Proper interaction with other fileareas depends upon the pending data
being on the disk.

3. The data is very important.

DISK BASIC I/O 8-16

The file area's file positioning is not affected by the PUT fan,& function.
Example:

PUT 3,&

8.9.7. The PUT statement of the form:

PUT fan,&&

allows the programmer to force the write into the directory of the EOF
currently in the filearea's control data. This special PUT will save the
programmer the necessity of doing a LOC(fan)1 function to remember the
current file positioning, a CLOSE to cause EOF write into the directory, an
OPEN to reestablish the link to the file, and a positioning GET or PUT to
position the filearea back to where it was. Before actually writing the EOF
to the directory, the PUT fan,&& function performs a PUT fan,& function. The
filearea's file positioning is not altered by the PUT fan,&& function.
Example:

PUT 2,&&

8.9.8. The PUT statement of the forms:

PUT fan,!$RBA
PUT fan,!$%

function identical to that for GET (see section 8.8.6). 8.9.9. The PUT
statement of the form:

PUT fan,!#rba

causes the file's EOF to be set to the value of the expression rba, which
must evaluate to a RBA. Nothing else is changed for that filearea. Remember,
a CLOSE or a PUT fan,&& statement must be executed to force the write of the
new EOF into the file's FPDE. Example:

PUT 2,1#2000

causes the EOF in filearea 2's control data to be set to 2000.

8.10. REMRA and REMBA
Within each filearea's control data, BASIC saves two additional relative file
location values:

1. 1. REMRA Membered Record Address.
2. 2. REMBA Membered Byte Address.

where:

1. The ONLY places where REMRA is used is (1) to position the file when
the GET or PUT statement has fp = # (see section 8.4.1.3) and (2) in the
LOC(fan)$, LOC(fan)! and LOC(1)# functions (see section 8.12).

DISK BASIC I/O8-17

2. The ONLY place where REMBA is used is to position the file when the
GET or PUT statement has fp = $ (see section 8.4.1.4).

3. Both REMRA and REMBA are in RBA format.

4. Each OPEN statement and each GET or PUT statement with rp = !RBA or
!$% marks both REMRA and REMBA as invalid.

5. Each INPUT and PRINT statement sets REMRA to the file position
existing at the start of the statement execution. REMBA is not used for
print/ input file ops.

6. Each GET or PUT statement with fp = null, rn, !rba, !% or * (for *,
only if REMRA is invalid at statement start or if the file is not record
segmented) sets REMRA = to the file positioning resulting from that fp
value.

7. Each GET or PUT statement with fp = null, rn, !rba, !% or * sets REMBA
= to the file positioning resulting from that fp value.

8. Don't let the concepts of REMRA and REMBA puzzle you too much. As
stated above, there are only two places where REMRA is used (when fp = #
and for the LOC functions) and only one where REMBA is used (when fp =
$). If you never use partial record I/O, then REMRA and REMBA are always
the same. The most common use will be in executing a PUT (with fp = #)
for the record just read.

8.11. Pseudo FIELD Function
For fixed item and marked item files, the FIELD statement is not legal.
However, there are times when the programmer may want to set the strings
associated with an IGEL to their specified lengths and keep them that way by
using LSETs and RSETs. The user could do this by using the STRING$ function.
Another way is to use the pseudo FIELD function having the following formats:

1. GET fan,%,IGELSN
2. GET fan,%,,IGEL
3. PUT fan,%,IGELSN
4. PUT fan,%,,IGEL

where:

1. fan and IGELSN are defined in the glossary and IGEL is defined in
section 8.4.2.

2. fan specification is required for text format protocol only. Whether
the filearea is open or what it is opened for is not of concern to this
pseudo FIELD function; this function is only concerned with the IGEL and
does not alter the filearea in any way.

3. The IGEL is processed:

1. Numeric variables are left unchanged.

2. Expressions of the form (len)$ and (lenh are bypassed.

DISK BASIC I/O 8-18

3. String variables in the IGEL must be prefixed.

4. String variables are assigned length = to the IGEL expression
prefix and either truncated or padded on the right with blanks as
necessary. Aside from the padding or truncation, the string contents
are not changed. However, if the string is not currently in the
string area, it is moved there. Subsequently, LSET and RSET may be
used to move data into these strings.

4. Example:

PUT 2,%,,IX%,(30)A$,DP#,(10)B$;

causes string A$ and B$ to be made into strings 30 and 10 characters in
length respectively, being padded with spaces or truncated on the right
as necessary. No data is transferred to the file and file positioning is
not changed.

8.12. LOC Function
NEWDOS/80 DISK BASIC has a LOC function defined as follows:

1. LOC(fan) where fan is a file area number, 1 - 15, of a filearea
opened for field item, MF or FF file operations. This function returns an
integer 1 - 32767 = the number of the previous record GET/PUT for that
file area. 0 = none or REMRA invalid. Example:

PUT 1,34
X = LOC(1)

results in X have the value 34.

2. LOC (fan)$ For record segmented files, this function returns -1
(IF statement true) if the start of the next record (if REMRA valid) or
the current file position (if REMRA invalid) is greater than or equal to
EOF, and returns 0 (IF statement false) if less than EOF. For non-record
segmented files and print/input files, this function returns -1 (IF
statement true) if the current file positioning is greater than or equal
to EOF, and returns 0 (IF statement false) if less than EOF. LOC (fan)$
differs from function EOF in that EOF tests only for exactly at EOF.

Example:

IF LOC(1)$ THEN END

ends the program execution if the next record is located at or beyond the
file's EOF.

3. LOC (fan)% Returns an RBA equal to the file's EOF. Example,
suppose the file contains 3142 bytes:

X = LOC(1)%

will result in X having the value 3142.

DISK BASIC I/O8-19

4. LOC (fan)! For record segmented files, this function returns a
RBA value equal to:

1. If REMRA valid, the location of the file's next record.
2. If REMRA invalid, the current file position.

For non-record segmented files and print/input files, this function
returns an RBA equal to the current file position.

Example, if the latest fully or partially processed record for filearea 1
starts at relative file position 1667 and the next record starts at rela-
tive file position 17$1, then

X = LOC(1)!

will set X equal to 1701.

5. LOC(fan)# Returns an RBA value equal to REMRA. Error if REMRA
currently invalid. Example, see above example:

X = LOC(1)#

will set X = 1667.

Use of LOC(fan)! and/or LOC(fan)# allows the programmer to obtain the file
position of a group of items (non-record segmented file) or a record (record
segmented file), remember it for future use, and then at a future time,
reposition the file to that data via either fp = !rba or fp = !$rba. This
allows programmers to build index files that index into all types of files
for random accessing.

8.13. I/O Error Recovery

The operation of the DISK BASIC statements PRINT, PUT, INPUT, and GET has
been altered such that if an error occurs during statement processing, the
filearea control data is left unchanged by that statement. This allows the
user/programmer more options when an error occurs. Examples:

1. The program is outputting to a sequential print/input file. 'DISK
FULL' error occurs. EOF is returned to where it was at the statement
beginning; the file can then be closed, and if no other files are open on
that drive, another diskette can be mounted, a new file opened for the
same file area, and then the statement in error executed again to
continue processing. Later input processing can then process both files,
using EOF on the first to trigger the shift to the 2nd.

2. The program is outputting to a MU file using two or more PUTS to out-
put a single record. 'DISK FULL' error occurs on the 2nd PUT of the cur-
rent record. EOF is reset to where it was at the error statement's begin-
ning, not to record's beginning. Before switching to a new file, EOF must
be set back to the record's beginning via the following two statements:

X!=LOC(fan)#: PUT fan,!#X!

DISK BASIC I/O 8-20

Then the file area may be closed, a new diskette mounted, the filearea
reopened, and processing continued back at the beginning for the record
(not to the beginning of the PUT). Since a MU file must always start with
an SOR item, if two MU files are used in concatenation, the 1st cannot
end with a partial record in anticipation of the next containing the rest
of the record.

********* The user/programmer must use extreme caution in swapping diskettes
on one drive or in swapping a given diskette to another drive when more than
the error filearea is open for the original drive.

Also to be remembered is that though the filearea control data is restored to
what it was at the statement beginning, the file data associated with a PUT
is indeterminate, and the contents of the variables receiving data on a GET
is also indeterminate.

In order to facilitate error recovery and coding in general, BASIC uses a
separate control area to perform the GET, PUT or other filearea related
operations, leaving the filearea's control data unchanged until the operation
completes without error. In NEWDOS80 there is only one temporary control
area; a function using a filearea CANNOT be nested within another function
using a filearea, even if both file areas are the same. Fox example, the two
statements given above CANNOT be combined into one as:

PUT f8n,1#LOC(fan)#

8.14. Additional notes about NEWDOS/80 DISK BASIC I/O

1. For marked item and fixed item files, the programmer GETS or PUTS an
item-group of data at one time. The only limitations on the amount of
data transmitted are file size and, if applicable, record size. Logical
records can be any length between 1 and 4095 bytes. The programmer should
never refer to the filearea buffer(s), as the contents at any time are
unpredictable. ******** WARNING ******* If the program alters data in the
filearea's buffer when a file is opened for anything other than field
item operations where FIELD was and is legal, the results are unpredic-
table and usually disastrous. Extreme caution must be used to avoid the
file damaging situations where FIELD statements have been legally used,
then that filearea used for I/O where FIELD is not legal but RSET or LSET
functions continue to be used for one or more FIELD defined strings for
that filearea.

2. The special functions designed for field item file ops, (MKD$, MKI$,
MKS$, CVD, CVI, CVS, LSET, RSET, etc.) work as before. However, the use
of MKD$, MKI$, MKS$, CVD, CVI, and CVS may be dropped for marked item or
fixed item file ops as GET and PUT will transmit numeric as well as
string data.

3. For GET or PUT statements using either IGEL or IGELSN, the programmer
must remember that any errors detected during IGEL processing will be
recorded as an error occurring on the line containing the GET/PUT rather
than on the actual text line of the IGEL.

DISK BASIC I/O8-21

4. To facilitate error detection for GET or PUT statements using IGELSN,
the GET or PUT should be the only statement on its text line.

5. A file can be updated only if it can be opened R or D. MI and
print/input files cannot be updated, though of course they may be added
onto. MU file records can be updated provided the new record length does
not exceed the original length of the record. The last record of a MU
file may be extended without this restriction.

6. Fileareas open for print/input files may have GET or PUT statements
executed for them if the fp type is !$rba, !$%, !#rba, &, && or % .

7. BASIC functions (i.e., EOF, LOC, LOF, etc.) that use fan cannot exist
within an IGEL or within OPEN, GET, PUT, CLOSE, PRINT (to disk) or INPUT
(from disk) statements. This is a NEWDOS/80 restriction not existing in
TRSDOS and is imposed by the error recovery operations (see section
8.13).

8. For disk files whose records can span two or more disk sectors (files
whose record lengths are either not standard or do not divide into 256
evenly), the number of actual disk I/O's is increased up to 200% (as
compared with files whose record lengths are standard and do divide into
256 evenly) when a record or item group actually has parts in two or more
file sectors. The percent overall increase in disk I/O is approximately
(LEN/256)*200 where LEN is the average length of records or item groups
processed, and where LEN < 256. No approximation is given for LEN > 256.

ERROR CODES9-1

9. ERROR CODES AND MESSAGES

9.1. DOS Error Codes and Messages

The following is a list of DOS error messages for NEWDOS/80 Version 2
corresponding to error codes placed in register A on a CALL or JP to 4409H.
The codes are listed in both decimal and hexadecimal.

00 00 NO ERROR
01 01 BAD FILE DATA
02 02 SEEK ERROR DURING READ
03 03 LOST DATA DURING READ
04 04 PARITY ERROR DURING READ
05 05 DATA RECORD NOT FOUND DURING READ
06 06 TRIED TO READ LOCKED/DELETED RECORD
07 07 TRIED TO READ SYSTEM RECORD
08 08 DEVICE NOT AVAILABLE
09 09 UNDEFINED ERROR CODE
10 0A SEEK ERROR DURING WRITE
11 0B LOST DATA DURING WRITE
12 0C PARITY ERROR DURING WRITE
13 0D DATA RECORD NOT FOUND DURING WRITE
14 0E WRITE FAULT ON DISK DRIVE
15 0F WRITE PROTECTED DISKETTE
16 10 DEVICE NOT AVAILABLE
17 11 DIRECTORY READ ERROR
18 12 DIRECTORY WRITE ERROR
19 13 ILLEGAL FILE NAME
20 14 TRACK # TOO HIGH
21 15 ILLEGAL FUNCTION UNDER DOS-CALL
22 16 UNDEFINED ERROR CODE
23 17 UNDEFINED ERROR CODE
24 18 FILE NOT IN DIRECTORY
25 19 FILE ACCESS DENIED
26 1A DIRECTORY SPACE FULL
27 1B DISKETTE SPACE FULL
28 1C END OF FILE ENCOUNTERED
29 1D PAST END OF FILE
30 1E DIRECTORY FULL. CAN'T EXTEND FILE
31 1F PROGRAM NOT FOUND
32 20 ILLEGAL OR MISSING DRIVE #
33 21 NO DEVICE SPACE AVAILABLE
34 22 LOAD FILE FORMAT ERROR
35 23 MEMORY FAULT
36 34 TRIED TO LOAD READ ONLY MEMORY
37 25 ILLEGAL ACCESS TRIED TO PROTECTED FILE
38 26 FILE NOT OPEN
39 27 ILLEGAL INITIALIZATION DATA ON SYSTEM DISKETTE
40 28 ILLEGAL DISKETTE TRACK COUNT
41 29 ILLEGAL LOGICAL FILE
42 2A ILLEGAL DOS FUNCTION
43 2B ILLEGAL FUNCTION UNDER CHAINING
44 2C BAD DIRECTORY DATA
45 2D BAD FCB DATA

ERROR CODES 9-2

46 2E SYSTEM PROGRAM NOT FOUND
47 2F BAD PARAMETERS)
48 30 BAD FILESPEC
49 31 WRONG DISKETTE RECORD TYPE
50 32 BOOT READ ERROR
51 33 DOS FATAL ERROR
52 34 ILLEGAL KEYWORD OR SEPARATOR OR TERMINATOR
53 35 FILE ALREADY EXISTS
54 36 COMMAND T00 LONG
55 37 DISKETTE ACCESS DENIED
56 38 ILLEGAL MINI DOS FUNCTION
57 39 OPERATOR/PROGRAM/PARAMETER REQUIRE FUNCTION TERMINATION
58 3A DATA COMPARE MISMATCH
59 3B INSUFFICIENT MEMORY
60 3C INCOMPATIBLE DRIVES OR DISKETTES
61 3D ASE=N ATTRIBUTE. CAN'T EXTEND FILE
62 3E CAN'T EXTEND FILE VIA READ

If the error code is not defined, UNKNOWN ERROR CODE message will be
displayed.

SYS4/SYS is the DOS error message display module.

9.2. DISK BASIC Error Codes and Messages

In addition to the standard ROM BASIC LEVEL II error codes, the following
DISK BASIC error codes are used:

51 FIELD OVERFLOW 68 TOO MANY FILES
52 INTERNAL ERROR 69 DISK WRITE PROTECTED
53 BAD FILE # 70 FILE ACCESS DENIED
54 FILE NOT FOUND 71 SEQ # OVERFLOW
55 BAD FILE MODE 72 RECORD OVERFLOW
56 FILE ALREADY OPEN 73 ILLEGAL TO EXTEND FILE
58 DOS ERROR 75 PREVIOUSLY DISPLAYED ERROR
59 FILE ALREADY EXISTS 76 CAN'T PROCESS LINE
62 DISK FULL 77 BAD FILE TYPE
63 INPUT PAST END 78 IGEL SYNTAX ERROR
64 BAD RECORD # 79 IGEL ITEM SYNTAX ERROR
65 BAD FILE NAME 80 BAD/ILLEGAL/MISSING IGEL ITEM PREFIX
66 MODE MISMATCH 82 BAD RECORD LENGTH
67 DIRECT STATEMENT IN FILE 83 STMT USES 2 FILE NAMES

84 BAD FILE POSITIONING PARAM

SYS13/SYS is the module that displays DISK BASIC and ROM BASIC error
messages. It is normally not in memory until needed. If an error code is
generated for which there is no message, UNPRINTABLE ERROR is displayed.

GLOSSARY10-1

10. GLOSSARY

This chapter contains the definitions of some of the terms used throughout
the NEWDOS/80 documentation.

alpaha or alpha character
Used when referring to the set of characters A - Z and a - z.

alphanumeric
Used when referring to the set of characters A - Z, a - z and 0 - 9.

bit
The smallest accessible unit of main or diskette memory. A bit has a
value of either 0 (meaning off) or 1 (meaning on). A group of 4
consecutive bits is known as a hexadecimal (or hex) digit, and a group
of 8 consecutive bits is known as a byte. Whenever the documentation
refers to a bit within a byte, the convention is bit 7 is the bit on
the left and bit is the bit on the right with the order of bits within
a byte going left to right, 7 to 0. The concept holds for bits within a
hex digit, left to right, 3 to 0.

boot see reset/power-on.

BOOT/SYS
One of the two control files required on every diskette used with
NEWDOS/80. See section 5.1.

buffer
An area of main memory used to hold the contents of a sector read from
disk or to hold the new contents of a sector being written to disk.
Each open FCB has a 256 byte buffer assigned for this purpose. Byte
mode disk I/O, such as is used for print/input, marked item, fixed
item, and (if record length less than 256) field item files actually
operates to and from the buffer with disk sector reads and writes being
done when necessary, and not on each GET or PUT or PRINT or INPUT
statement execution.

byte
The smallest addressable unit of main or diskette memory. A byte is
composed of 8 bits. When the value of a byte is given, it is usually
expressed as two hexadecimal digits. In NEWDOS/80 documentation, the
words byte and character are used interchangeably even though character
can have a more restrictive meaning.

chaining
Used in NEWDOS/80 to refer to the process of bringing keyboard input
characters from a disk file known as a chain file. See section 4.3.

character
Used interchangeably with byte, but also used to refer to a byte
containing a printable value.

GLOSSARY 10-2

close
In disk I/O, to close a FCB or a filearea means to dissolve the link
between a program and a disk file created by the open function.

DEC Directory Entry Code
A one byte code used to specify a particular FDE and used by DOS to
quickly locate that FDE in the directory. When an FCB is open, its 8th
byte contains the DEC for the file's FPDE. Each FXDE contains in its
2nd byte the DEC for the preceding FDE for the same file, and each FPDE
or FXDE whose 31st byte = 255 0FEH) contains in its 32nd byte the DEC
of the next FXDE for the file. The format of the 8 bit DEC is:

rrrsssss

where sssss+2 = the relative number within the directory of the sector
containing the FDE, and rrr times 32 (20H) equals the relative byte
address within the sector of the FDE.

DIR/SYS see sections 5.1 and 5.6.
One of the two control files required on every diskette used with
NEWDOS/80. DIR/SYS contains the directory for a diskette.

directory see sections 5.1 and 5.6.
In DOS, the directory refers to the contents of the file DIR/SYS that
must be present on every diskette used by NEWDOS/80. The directory
contains the control information specifying all files and the free or
allocated state of all space on the diskette. If the directory is
damaged or destroyed, the rest of the information on the diskette is
usually, but not always, no longer available to the user.

DOS Disk Operating System
Though many thousands of programmers are quite capable of writing their
programs to communicate directly with the diskette, it is almost always
preferable to allow another program, or collection of programs, to act
as an intermediary between the user program and the disk files the
program uses. This intermediary is commonly called a DOS and serves to
both structure and vastly simplify a program's I/O with the files it
uses. Usually, as in NEWDOS and TRSDOS, the DOS functions are much more
extensive such that the DOS becomes the primary control program in the
computer and has available various other functions, other than disk I/O
control, that it performs in response to commands, known as DOS
commands (specified in chapter 2), or DOS calls (specified in chapter
3). In NEWDOS/80, the DOS operates in the 4000 - 51FFH region of main
memory with some of its functions using the 5200 - 6FFFH region and the
spooler running out of highest memory.

DOS-CALL or dos-call
Refers to the DOS state entered when a user program calls the DOS
routine at 4419H (see sections 3.11 and 4.4) to execute a DOS command
or a user program. There can be multi-levels of DOS-CALL state.

DOS command or doscmd
Refers to one of the built-in DOS functions described in chapter 2. DOS
commands can be executed by keying in from the keyboard or through
calls from the current executing program (see DOS-CALL).

GLOSSARY10-3

EOF End Of File
Of or pertaining to the end of a file. Some files have one or more
specific EOF bytes that mark the end of a file (assembler source files
use 1AH, BASIC non-ASCII text uses 3 consecutive bytes of zeroes,
etc.); however, most files do not and rely entirely upon the EOF within
the FCB or FPDE to indicate where the file ends. If a file is empty,
EOF equals and if a file has 1324 bytes, the EOF value expressed as an
RBA is 1324. Within a NEWDOS FCB, EOF is a three byte RBA value of the
file's last byte+1. The EOF value stored in a file's FPDE is not in RBA
format. See sections 5.7 (fpde bytes 4, 21 and 22) and 5.9 (FCB 9, 13
and 14).

EOL End Of Line
Of or pertaining to the end of a line. For input data or a command,
this is usually the ENTER character (0DH). For BASIC text, a zero byte
ends a line. If the line does not have an explicit EOL character, then
EOL means the line's last character + 1.

EOM
Of or pertaining to the end of a message. The EOM character code is 03.
EOM is used to end a message when that message end is not also the end
of the line. When encountered, the EOM character is not displayed or
printed nor is the display or printer advanced one character.

EOR End Of Record
Of or pertaining to the end of a record. FOR is also the relative byte
address within the file of the record's last byte + 1.

EOS End Of Statement
Of or pertaining to the end of a statement. For BASIC text, a colon
ends a statement.

extent element
A two byte control element within a FPDE or FXDE specifying a 1 to 32
granule contiguous area of diskette storage assigned to the file. See
section 5.7, FPDE 23rd-30th bytes.

fan file area number
A fan is a BASIC expression evaluating to an integer (range 1 - 15)
specifying which filearea is to be used for the current BASIC function.

FCB File Control Block.
See section 5.9. A data area containing information controlling an I/O
link between a program and a diskette file. The link is created by the
open function, dissolved by the close function, and used by all other
disk I/O functions including GET, PUT, PRINT, INPUT, LOC, etc. The FCB
contains the NEXT and EOF fields, the buffer address, security
information, record length, etc.

FDE File Directory Entry. See section 5.6.3.
In NEWDOS, each sector of the directory file DIR/SYS, except for the
first two, is divided into eight 32 byte control areas called FDEs. A
FDE is either free (available for assignment) or in use as a FPDE or
FXDE.

FF file
A BASIC fixed item file segmented into records all of the same length.

GLOSSARY 10-4

FI file
A BASIC fixed item file that is not record segmented.

file or disk file or diskette file
A collection of data on a disk or diskette. A file may contain diskette
control information (as do BOOT/SYS and DIR/SYS), a machine language
executable program (as do SYS0/SYS, BASIC/CMD and SUPERZAP/CMD), a
BASIC program (as does CHAINTST/BAS) or user data (such as mailing
lists, payroll, inventory). Control data for all files is contained
within the file DIR/SYS (see section 5.6) with each file being assigned
one FPDE and zero or more FXDEs. A file must exist entirely on one
diskette. Diskette space is allocated to a file as needed in units
called granules.

filearea
An area of BASIC's system storage containing control information, a FCB
and a 256 byte buffer. A filearea is used during disk file operations
to maintain an I/O link between a file and the BASIC program. This I/O
link is established by OPEN, used by PRINT, INPUT, GET, PUT, FIELD,
EOF, LOF, LOC, etc., and dissolved by CLOSE. When 2 or more fileareas
are open to the same file, each acts in ignorance of the others. A
BASIC program may have open at any one time as many as 15 fileareas.
The number of fileareas actually available to the BASIC program is
specified when BASIC is activated (see section 7.2) with the default
being 3.

field item file
This is a name used in NEWDOS/80 for what, in TRSDOS disk BASIC, is
called a random file since all three types of files, field item, fixed
item and marked item can be used either randomly or sequentially or
both. Field item and fixed item files are essentially the same type of
file; the main difference is in the type of I/O link, field item or
fixed item, used. For field item files, the definition of the file
items is done solely via the FIELD statement. Field item files are
always segmented into records all of the same length, with that length
being from 1 to 256 bytes.

file item
A unit of file storage zero or more bytes in length containing a
numeric value or a character string.

filespec
This term is used in NEWDOS/80 to refer to the combination of file
name, name extension, password and drive number used to specify a file
in a DOS command, BASIC statement or an unopen FCB. Of the four
elements, only file name is required. See section 2.1 for full
definition of filespec.

fixed item file See section 8.4.
Fixed item and field item files are essentially the same type of file.
The difference lies in the type of link, field item or fixed item, used
in the file I/O. For fixed item file processing, the definition of the
file items is entirely dependent upon the IGEL used in the GET or PUT
statement. There are two types of fixed item files, FI and FF.

format
Aside from many other definitions of the word format, it is also the
word used for the process that prepares a raw diskette for use under
NEWDOS/80. This process magnetically structures the diskettes into
tracks which are at the same time further sub-divided into 256 bytes

GLOSSARY10-5

sectors. Depending on the drive type, the diskette will contain 35, 40,
77 or 80 tracks, and depending upon the drive type and recording
density, each track will contain 10, 17, 18 or 26 sectors.

fp file positioning
See section 8.4.1. fp refers to the second parameter of a GET or PUT
statement. fp specifies the file positioning to be done during the file
positioning phase that precedes the data transfer phase, if any, of a
GET or PUT statement.

FPDE File Primary Directory Entry
See section 5.7 for FPDE specification. A FPDE is created in the
diskette directory whenever a file is created. If a file exists on a
diskette, there will always be a FPDE for it in the directory. The FPDE
contains the file name, extension, passwords, protection level, EOF,
the first 4 extent elements and other information. When a file is
killed, the FPDE and any associated FXDEs are dissolved.

FRDE File Extended Directory Entry
See section 5.8 for FXDE specification. Whenever the number of extent
elements needed to account for a file's diskette space exceeds four,
one or more FXDEs are created in the directory to hold the extra extent
elements, a maximum of four per FXDE. If a file has FXDEs, they are
accessed via the FPDE. As a file's diskette space requirements change,
FXDEs are created or dissolved as necessary, and when a file is killed,
all FXDES associated with that file are dissolved.

GAT Granule Allocation Table
See section 5.6.1. The GAT is that portion of the directory's 1st
sector (known as the GAT sector) wherein the free or allocated status
of each granule is accounted for.

granule
The smallest unit of diskette storage allocatable to or de-allocatable
from a file. When a file needs diskette space, one or more granules is
allocated. For NEWDOS/80 a granule consists of 5 sectors equaling 1280
bytes.

hash code
Hash code as used in the DOS refers to a one byte encode of a file's
name and extension used during open to rapidly find the file's FPDE in
the directory. Hash codes are stored in the HIT sector, see section
5.6.2.

hexadecimal or hex
A numbering system using 16 digits, rather than 10 used by the decimal
system. The digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and
F. The reason for the use of hexadecimal as opposed to decimal is that
a hexadecimal digit is an easy way to express the value of 4
consecutive bits, where the following table defines the correspondence
between a hexadecimal digit and four binary bits.

0 0000 4 0100 8 1000 C 1100
1 0001 5 0101 9 1001 D 1101
2 0010 6 0110 A 1010 E 1110
3 0011 7 0111 B 1011 F 1111

GLOSSARY 10-6

Hexadecimal representation of disk, file or main memory locations and
contents are widely used in the computer industry. Though some users
can get by without learning anything of hexadecimal, we strongly
recommend that users learn the rudiments, at least enough to understand
the SUPERZAP and DEBUG displays. Throughout NEWDOS/80 and its
documentation a hexadecimal numeric value is expressed with a suffixed
H character (i.e., 13 = OH or 256 = 100H) unless otherwise specified.

HIMEM
Refers (1) to the address of the highest usable main memory location,
(2) to the 2 byte main memory area (Model I locations 4049H - 404AH and
Model III locations 4411H - 4412H) where the HIMEM value is stored and
(3) to the name of a DOS command (see section 2.25). Main memory above
HIMEM is either non-existent or is reserved for other uses. All user
Z-80 code programs should be coded to observe HIMEM.

HIT Hash code Index Table
See section 5.6.2. That portion of the directory's second sector (also
known as the HIT sector) that contains the hash codes for all files on
the diskette. Instead of searching the entire directory for a file's
FPDE during open, DOS computes the hash code from the file name and
extension, looks it up in the HIT sector and then goes directly to the
sector containing the FPDE.

I/O input and/or output

I/O link or I/O path
Actual disk I/O between a disk file and main memory is done via an I/O
link (also known as an I/O path) created by open, dissolved by close,
and used by GET, PUT, PRINT, INPUT, LOC, EOF, etc. While the link is
open, the controlling information for the link is contained in a FCB or
filearea (which contains a FCB). Multiple links to the same file can be
open at the same time with each link knowing nothing of the others. An
I/O link remembers the position in the file where it is operating; thus
multiple links can be operating on the same file at the same time.
However, be careful as, remember, each I/O link knows nothing of the
other's actions.

IGEL Item Group Expression List
See section 8.4.2. An IGEL is a list of BASIC expressions corresponding
to a group of file items during the execution of a GET or PUT statement
used in fixed item or marked item file processing.

IGEL expression See section 8.2.3.
An IGEL expression (usually but not always a BASIC variable) is that
part of an IGEL corresponding to a file item. For each file item
processed in a fixed item or marked item file GET or PUT statement,
there is a corresponding IGEL expression in the IGEL.

IGELSN IGEL Sequence Number
The line number (also known as sequence number) of the BASIC text line
containing the first or only line of the IGEL to be processed by the
current GET or PUT statement. If used, the IGELSN is the 3rd parameter
of the GET or PUT statement. An IGELSN is used in a fixed item or
marked item GET or PUT statement whenever the GET or PUT statement
itself does not contain the IGEL, and this usually occurs when the same
IGEL is used by two or more GET and/or PUT statements.

GLOSSARY10-7

item group
A group of zero or more file items. In BASIC, an item group is the zero
or more file items processed by an individual INPUT, PRINT, GET or PUT
statement and is most commonly equivalent to a logical record.

len See section 8.7.7 and see LRECL
The parameter in a BASIC OPEN statement that specifies either the
standard or the maximum record length.

logical record
A group of meaningful related file items. Though file data is
physically ordered on the diskettes into sectors, the programmer
usually deals with data groupings that are logically related and
grouped, rather than physically related and grouped. Thus, when data is
read from or written to a file, it is usually done so in logical record
units.

LRECL Logical RECord Length
This is the standard or maximum length in bytes for records of a file.
For non-BASIC files LRECL is 0 - 255 (with 0 meaning 256) and, is
stored in the FPDE's 4th byte (though never used) and the FCB's 10th
byte. In BASIC, LRECL is equivalent to len (see section 8.7.7).

lump
refers to a division of diskette space as that space is accounted for
in the diskette directory. Each of the first 192 bytes in the GAT
sector contains either space allocation or lockout information for one
lump where, depending on the number of granules per lump, each bit
within the byte is either unused or specifies the allocated/free or
non-existent/ existent state of one of the lump's granules. This
definition was coined for use with NEWDOS/80 Version 2 to avoid using
the words track and cylinder. See sections 5.6.1 and 5.7 (23-30th byte
discussion).

marked item file see section 8.6.
A file in which each file item is identified as to length and type by a
prefixed marker byte. A marked item file is distinctly different from a
print/input, field item or fixed item file. The three types of marked
item file are MI, MU and MF.

MF file
A marked item file that is segmented into records all of the same
length. MI file A marked item file that is not record segmented.

ms millisecond

MU file
A marked item file that is segmented into records of differing lengths.

null
The absence of a parameter or expression. When parameters are separated
by commas, back to back commas („) indicate a null.

GLOSSARY 10-8

null character
A character or byte with value = 0.

null string
A string or an expression evaluating to a string zero characters in
length.

open
In disk I/O, to open a FCB or a filearea is to establish a link between
the program and a disk file, using the FCB or filearea (which contains
a FCB) to hold the link's control data. Though it is quite common to
say that a file is opened, it is more correct to say that a FCB or
filearea is opened for there is nothing in the disk file indicating
open or closed state or the number of links opened to it as more than
one FCB or filearea may be open to a given file at the same time. The
link established by open remains until dissolved by the close function.
It is the link that determines the type of I/O done with a file and
where in the file. Thus, if differently specified links are established
to the same file to exist concurrently, the same file data can be used
but interpreted differently by each of the different links.

partial record I/O
Refers to instances where I/O is done in partial rather than full
logical records. In BASIC, GETS and PUTS for marked-item and fixed-item
files may operate in this manner though they usually operate in whole
record I/O mode.

patch see zap.

power-on/reset See reset/power-on

print/input file
A disk file written to by PRINT statements and read by INPUT
statements.

record segmented file
A type of file that can be broken down into logical records by BASIC.
These file types are field item, FF , MF and MU.

REMBA REMembered Byte Address See section 8.10.

REMRA REMembered Record Address See section 8.10.

RBA Relative Byte Address
A method of addressing within a file, record, control block, etc. where
addressing starts at 0 rather than 1. The first byte of the unit has
RBA = 0. The nth byte in the unit has RBA value = n-1. In NEWDOS, RBA
is used to express EOF and NEXT in the FCB; this use of RBAs in the FCB
is major difference between NEWDOS and the old versions of TRSDOS. In
BASIC, RBA is used in file positioning (see section 8.4.1) where, in fp
= !rba, !$rba or !#rba, rba is defined to be a BASIC expression
evaluating to a number between 0 and 16,777,215 and represents a
relative byte position from the beginning of the file.

reset/power-on also known as boot.
refers to the automatic computer execution that occurs whenever the
computer's reset button is pressed or when the computer is powered up.
In reality, you must never have diskettes in any drives when you power
up the computer. After the power up, put the system diskette in drive 0
and press reset. For the most part, NEWDOS/80 treats a reset after
power-on the same as a reset at any other time. There are some

GLOSSARY10-9

differences, however, with the most notably being the date and time
settings that occur.

During a reset/power-on, the ROM's bootstrap routine receives computer
control from the hardware reset logic and reads the first sector of the
diskette mounted in drive 0 into the DOS system buffer (4200H 42FFH on
the model I and 4300H - 43FFH on the model III). That 256 bytes
contains NEWDOS's bootstrap routine which receives computer control
from the ROM and then reads into main memory a fresh copy of
NEWDOS/80's main memory resident module SYS0/SYS. Execution control is
then passed to SYS0's initialization routines in the DOS overlay area.
Using the current SYSTEM and PDRIVE specifications, NEWDOS/80 is
initialized. When this is completed, either NEWDOS/80 READY is
displayed or DOS commences the execution of the AUTO (see section 2.4)
specified DOS command.

sector
For NEWDOS/80, diskette data storage is physically done in groups of
256 bytes called sectors. Actual diskette reads and writes are done by
whole sectors, usually a single sector at one time.

SOR Start Of Record
Of or pertaining to the start of a record. All records of a MU file
start with a SOR item, a 70H byte.

track
The unit of diskette storage a disk drive read/write head passes over
during one revolution of the diskette. A diskette is divided
magnetically into a number of concentric tracks during format (35 is
standard on the model I, 40 on the model III). Format also divides each
track magnetically into 256 byte sectors which will subsequently
contain data of any and all kinds.

user segmented file
A type of file which cannot be broken down into logical records by
BASIC. These file types are FI and MI. If these file types are to be
segmented into records, it is done so solely by the programmer without
BASIC's knowledge.

vice
Means 'instead of or 'in place of'.

whole record I/O
Whole record I/O is when an entire logical record is read or written
during the execution of a single INPUT, PRINT, GET and PUT statement.
This is the normal procedure for those statements. See partial record
I/O.

zap
To alter data or program executable code without recompilation. See
section 11.

ERRORS, PATCHING11-1

11. ERROR REPORTING, INCOMPATIBILITY HANDLING, AND PATCHING

11.1. Introduction
As with previous NEWDOS versions, NEWDOS/80 Version 2 will contain errors not
presently known, will receive minor enhancements as the months pass, and has
incompatibilities with other DOSS including earlier versions of NEWDOS. Where
possible and economically feasible, patches (zaps) will be issued to correct
the errors, provide the enhancements and, in selected cases, relieve the
incompatibilities.

Apparat relies heavily on the NEWDOS/80 users to find and inform Apparat of
NEWDOS errors and incompatibilities. Over half of the zaps generated for
NEWDOS/80 Version 1 were a direct result of an error properly reported. In
some cases, the user had to report the error more than once before Apparat
either paid attention or finally found the error. Reported errors may or may
not be fixed, depending upon the seriousness, the magnitude and the amount of
zap area available in the affected modules. If an error is not to be fixed,
Apparat will, in a comment zap, report the error and announce that it will
not be fixed.

11.2. Incompatibility Handling

NEWDOS/80 is a different DOS from TRSDOS, VTOS, LDOS, DOSPLUS and others;
therefore many user programs will not operate on NEWDOS/80 without some
modification. For any particular program, the best thing is to try that
program out with NEWDOS/80; be sure you do not use valued file data in these
tests. In the past, Apparat has tried to create and distribute the necessary
patches to commonly used, commercially sold programs, but this proved
unworkable for a number of reasons.

1. Apparat was not notified by program manufacturers of a pending release
of a new program and of its actual incompatibility with NEWDOS/80. The
discovery of the incompatibility always came from the users. This is not
a criticism, only a statement of fact.

2. Apparat did not and does not have the personnel resources to research
each incompatibility problem and to generate the necessary zaps to the
non-NEWDOS/80 programs.

3. The mailing of zaps to all registered NEWDOS/80 owners was delayed
until a number of zaps were available, a delay usually of months, though
Apparat would mail out the latest zaps to individuals on request. It
would be much better if the necessary incompatibility zaps were sent out
along with the non-NEWDOS/80 program. Apparat, in the past, did not make
an effort to send the zaps to the manufacturers to include with their
programs, and for this we apologize.

For NEWDOS/80 Version 2, Apparat will still issue compatibility zaps for some
application programs, but fundamentally Apparat will rely on the creator
and/or distributors of non-NEWDOS/80 programs to produce and distribute the
zaps necessary, if any, do run those programs with NEWDOS/80. To assist in
this effort, Apparat offers a free copy of NEWDOS/80 to business firms that

ERRORS, PATCHING 11-2

produce software products to be used on NEWDOS/80, provided these products
are advertised in a major publication (NEWDOS/80 need not be mentioned in the
advertisement).

11.3. Reporting of NEWDOS/80 Errors and Incompatibilities

To reduce confusion, frustration, cost and wasted time, Apparat requires that
the following be done:

1. Read and understand the applicable documentation.

2. For errors, assure that language programs using NEWDOS/80 are inter-
facing correctly. Apparat does not check out programs other than what it
creates.

3. Assure that all outstanding mandatory zaps have been applied to your
NEWDOS/80 system or user programs.

4. Run the circumstances resulting in the NEWDOS/80 error or incom-
patibility many times under varying conditions (if possible).

5. Precisely and concisely write up the error circumstances and send,
along with applicable diskettes, to:

Apparat, Inc.
4401 S. Tamarac Parkway
Denver, CO 80237

6. Include your NEWDOS/80 registration number.

7. Include copies of the diskettes (as gifts to Apparat) containing the
all the modules involved in the error or incompatibility. Apparat will
destroy the diskettes' contents, including any copies made of them, when
done with the error study.

8. DO NOT PHONE Apparat directly. Phone answering personnel are not
technically knowledgeable of NEWDOS.

9. DO NOT INCLUDE product orders or other requests with your error
report.

11.4. Format of NEWDOS/80 Zaps

In NEWDOS/80, zaps (patches) are manually applied by using the program
SUPERZAP discussed in section 6.1. The user should study section 6.1 to learn
how to use SUPERZAP, but if he/she prefers not to do that, enough information
will be provided in this chapter to scrape by.

Though SUPERZAP is a somewhat cumbersome method of applying zaps, this method
does have the advantage of forcing the users to learn how to use SUPERZAP and

ERRORS, PATCHING11-3

gives them confidence in using that program they would otherwise not have ac-
quired. Sooner or later, everybody needs to use SUPERZAP to help repair dam-
aged disk files, and when this emergency arises, the more experience the user
has had with SUPERZAP, the better.

NEWDOS/80 zaps are consecutively numbered and are dated with the date the zap
was made available. A zap will be either mandatory or optional, and it is
either for a NEWDOS/80 module (i.e., one of the files on the NEWDOS/80 master
system diskette) or for a non-NEWDOS/80 module. If it is mandatory zap to a
NEWDOS/80 module, and your NEWDOS/80 system diskette is dated later than the
zap, the zap will usually, but not always, already have been applied to your
diskette.

Each zap will have a short explanation of the reason for it. Next will follow
one or more zap areas, with each area composed of three parts:

10. The location on the diskette of the first byte of the area. This
location will consist of 3 parameters and will be in the following
format.

filespec1,relsector,relbyte

where

1. filespec1 gives the name or name/ext of the file to be zapped.

2. relsector is the relative sector within the file. relsector is in
decimal.

3. relbyte is the relative location within the sector of the zap
area's 1st byte. relbyte will be in hexadecimal but will not be
suffixed with the character H.

Examples:

DIR/SYS,2,20
EDTASM/CMD,20,F6
YOURFILE,0,88

2. The old contents of the zap area. Each byte will be printed as two
hexadecimal digits, and for readability the bytes will be separated by at
least one space. If a hex digit position contains a - , then either
Apparat doesn't care or doesn't know what exists in that hex digit before
it is zapped.

3. The new contents to be zapped into the area, printed in the same
format as for the old contents.

If a zap area covers more than 24 bytes, the format is changed so that both
the before and after areas will be aligned to appear as the user will see
them on the SUPERZAP display. This makes for easier viewing and zapping.

Many zaps really do not change the first and/or last bytes of the zap area.
These bytes were included to help the user synchronize on the proper area,
both before and after the zap, and to provide more verification bytes.
However, it is not mandatory that the first and last bytes of the zap area be

ERRORS, PATCHING 11-4

used this way, and they usually won't be if the current zap area adjoins or
overflows the area of another zap or if the zap area starts, ends, or
overflows a sector boundary.

11.5. Zapping Procedure
To apply a zap, perform the following steps:

1. Make at least one backup copy of the diskette to be changed. NEVER,
NEVER, NEVER, NEVER apply a zap without first making a backup copy!!!

2. Execute DOS command SUPERZAP.

3. Mount the diskette containing the file to be zapped.

4. Enter the SUPERZAP function code DFS.

5. Enter the file's filespec, containing (1) the name or name/ext from
the zap area location's 1st parameter (see section 11.4.1.1.) (if the
file has been renamed, then use the applicable name/ext), (2) the access
password, if required, and (3) the drive number.

6. Enter the zap area location's 2nd parameter (see section 11.4.1.2)
as the relative sector number within the file.

7. The sector will be displayed to the user (see step 14 below). Find
the zap area in the display, and verify that the old contents are as they
should be. If they are not, then check if the zap you are about to apply
is already applied; it may well be. If it is, then skip the current zap
area and go on to the next. If it isn't, then check Apparat.

8. When satisfied with the old contents, type MODxx without ENTER. xx
is the zap area location's Ad parameter (see section 11.4.1.3.).

9. The cursor should appear over the first hex digit of relative byte
xx. If the cursor does not appear, type in MODxx again. If the cursor
appears over the wrong digit, check to make sure you are where you think
you are. CAUTION!!! When the cursor appears, SUPERZAP is in modify
(overwrite) mode; be careful what keys you press. In modify mode, left,
right, up and down arrows and the space bar may be used to move the
cursor.

10. To alter the hex digit in the cursor position, press the proper 0 -
9 or A - F key that represents the replacement value. The cursor will
automatically advance to the next hex digit.

11. Type in all the new hex digit values.

12. If not satisfied with the changes, press Q to cancel the
modification and return to the display.

13. When satisfied with the changes and ready to update them to the
diskette, press ENTER. Then press Y, and when instructed, press ENTER
again. SUPERZAP will exit modify mode back to display mode.

ERRORS, PATCHING11-5

14. When in sector display mode (no cursor):

1. Press K if you wish to display another sector of the same file.
Go to step 6.

2. Press J if you wish to go on to another file. Go to step 5.

3. Press X if you wish to return to the function menu.

4. Go to step 7 if there is another zap area for this same sector.

11.6. NEWDOS/80 Zap Distribution

Apparat requires registration of all NEWDOS/80 owners and will limit
distribution of its zaps to registered owners. Please notice that, unlike
other registration forms, the NEWDOS/80 registration card does not require
the NEWDOS/80 owner to agree to anything; just let us know who you are!

Apparat does not guarantee that zaps will be distributed, as such
distribution is a cost to Apparat over and above what the purchaser paid for
NEWDOS/80. Apparat reserves the right to institute a charge for the zaps at
some future time.

Zaps will be distributed by mail. Zaps will NOT be given over the phone.
Distribution of zaps to all registered owners will occur whenever a large
number of zaps has been accumulated. However, upon request, the latest zaps
will be sent to individual registered owners, but please, if you are not
having any trouble with your NEWDOS/80, don't ask.

When Apparat receives a registration card, the latest copy of the zaps will
soon thereafter be mailed to the registered owner. This lets the owner know
that Apparat has received the registration card and provides the owner with
any zaps generated since either that manual (containing zaps as chapter 13)
was made up or that NEWDOS/80 diskette was created.

11.7. Initial Installation of Zaps

When you first receive your NEWDOS/80, chapter 13 will contain the zaps out-
standing at the time your manual was made up. Some of the pages for that
chapter may have been inserted in the front of the manual at the last minute;
find them and put them in chapter 13.

Next, make some backups of the NEWDOS/80 master diskette.

Now, since your NEWDOS/80 manual may or may not have been made up at the same
time as your NEWDOS/80 diskette, you must synchronize the diskette with the
zaps, if any, in chapter 13. Most of the mandatory zaps to NEWDOS/80 modules
will already have been installed, but you must still check.

ERRORS, PATCHING 11-6

Using SUPERZAP, test if the highest numbered mandatory zap for a NEWDOS/80
module has already been installed. If it has, then you may assume all lower
numbered mandatory zaps for NEWDOS/80 modules have been installed. This is
not the case for optional zaps to NEWDOS/80 and any zaps to non-NEWDOS/80
programs. If this highest numbered mandatory NEWDOS/80 module zap has not
been applied, then check the next lower numbered such zap until you reach one
that has been installed. Then, from but not including that zap, start
applying the higher numbered mandatory NEWDOS/80 module zaps in ascending
numeric order. Higher numbered zaps may well zap over an area covered by a
lower numbered zap.

Apparat has received many complaints from users who did not realize that some
or all of these mandatory zaps were already applied to their diskette. As a
general rule, but you must still check, a mandatory NEWDOS/80 module zap is
installed on your diskette if your diskette is dated later than the zap.

As well as applying the mandatory NEWDOS/80 module zaps, you must apply the
mandatory zaps, if any, to those non-NEWDOS/80 modules you are going to use
with NEWDOS/80. You should also at least read the optional zaps so you know
they exist.

Finally, though you will probably never know it, it is possible that your
NEWDOS/80 diskette will have some mandatory zaps installed not yet listed in
your chapter 13. This is not common, but such a thing has occurred. The zap
sheets you receive in response to sending in your NEWDOS/80 registration card
should cover those unknown but nevertheless already installed zaps.

11.8. Subsequent Installation of Zaps

When you receive a zap mailing from Apparat, you should apply the new
mandatory zaps to NEWDOS/80 modules and to those non-NEWDOS/80 modules you
are using with NEWDOS/80. Once again, you should at least read through the
new optional zaps. There is no need to reread the zaps that you already have,
as zaps are seldom updated and if they are, usually a subsequent zap refers
to the change.

Remember, your NEWDOS/80 master diskette may already have some of the newer
mandatory NEWDOS/80 module zaps applied; so check the highest numbered new
zap and work your way down until you come to a zap that has been installed.
Then start installing higher numbered zaps in ascending zap number order.

Never apply a higher numbered mandatory NEWDOS/80 module zap before applying
all lower numbered mandatory NEWDOS/80 module zaps.

11.9. Diskette Update Service

In NEWDOS/80 version 1, due to the large number of zaps, Apparat instituted a
NEWDOS/80 original diskette zap update service that is being continued for
Version 2. This service does not replace the zaps but is intended for those
users who would prefer Apparat to apply the zaps.

ERRORS, PATCHING11-7

The user sends a package to Apparat containing his/her original NEWDOS/80
diskette, $10.00 for service and handling, and a note explaining that the zap
update is wanted. Address the package to:

APPARAT, INC.
NEWDOS80 Diskette Update Service
4401 S. Tamarac Parkway
Denver, Co 80237

Do not include any other information or requests in this package. Include in
your note your phone number, your NEWDOS/80 registration number and the
return address to be used.

Apparat will perform a full diskette COPY (without CBF option) from its then
master onto your diskette, such that all NEWDOS/80 module mandatory zaps then
outstanding will be included on your diskette. Your diskette will then be
returned via UPS if possible (we can trace UPS better than the mail);
otherwise, the mail will be used. Please, if possible, provide us with a
street address.

The original diskette must still contain its original label with the
registration number, which will be checked against your registration card.

The diskette must also contain the NEWDOS/80 system. If the registration
number is missing or the diskette does not contain the system, the update
will be denied. The $10.00 service and handling charge applies each time an
original NEWDOS/80 diskette is submitted and it must accompany the diskette.
Be certain all non-NEWDOS/80 modules that you wish to keep have been taken
off the diskette before sending it. If your original diskette is unchanged,
then you have nothing to take off.

This zap update service includes the mandatory zaps to NEWDOS/80 modules
only. It does not include optional zaps or zaps to non-NEWDOS/80 modules
(i.e., SCRIPSIT, EDIT, etc.). This service does NOT include an upgrade to a
new version of NEWDOS, if and when that occurs.

Do NOT send your diskette back to your dealer as dealers are not kept up to
date on the current zaps. Send your diskette only to Apparat.

11.10. Zap Duplication.

All users keep many copies of NEWDOS/80, and single drive users are forced to
have a NEWDOS/80 system on every diskette they use with NEWDOS/80. Once the
new zaps have been installed correctly on one copy of NEWDOS/80 and these new
zaps have been checked out, the user is now faced with the task of either
zapping all the other diskettes or with copying the zapped files to those
other diskettes. Through use of format 6 COPY (CBF) with the ILF and DFO
parameters (the DFO parameters is defined below and not with COPY). Instead
of specifying this procedure, the following example will be used instead.

Suppose that the modules SYS0/SYS, SYS2/SYS, SYS17/SYS, SYS14/SYS,
BASIC/CMD, and DIRCHECK/CMD were changed by the latest zaps. The zaps
were applied to one copy of NEWDOS/80, and NEWDOS/80 was then checked out

ERRORS, PATCHING 11-8

to make sure the zaps were OK. For the rest of this example, this
diskette is referred to as the zapped diskette.

An ILF file (which is just like a chain file) is built containing the
following records.

SYS0/SYS
SYS2/SYS
SYS17/SYS
SYS12/SYS
BASIC/CMD
DIRCHECK/CMD

This file is named ZAPNAMES/ILF and is placed on the zapped diskette.
Next, a chain file is built containing one of the following two commands:

COPY,0,0,,NFMT,DFO,CBF,ILF=ZAPNAMES/ILF:0 single drive systems

or

COPY,0,1,,NFMT,DFO,CBF,ILF=ZAPNAMES/ILF:0 two drive systems

This file is named ZAPDUP/JCL and is stored on the zapped diskettes. Both
of these files can be built using CHAINBLD (see section 6.6) or SCRIPSIT.

The zapped diskette will be considered both the SYSTEM and the SOURCE
diskette and will be mounted on drive 0. The NEWDOS/80 diskette to
receive the zapped modules will be considered the destination diskette,
and, in the case of two drive systems, it will be mounted on drive 1.

Then, for every NEWDOS/80 diskette that is to receive the zapped modules,
execute the DOS command:

DO,ZAPDUP

This DO command will cause execution of the COPY command contained in
file ZAPDUP/JCL:0. Since the COPY command specifies an ILF file, only the
files listed in that ILF file will be copied. Further, since the DFO
option was specified, only those of the six files previously existing on
both the destination and source diskettes are copied. For example, if
DIRCHECK/CMD was not previously on the destination diskette, it is not
copied to it.

Single drive system users will have to do a lot of diskette mounting. It
is best to put a special marking on the zapped diskette to distinguish it
from all the others.

Two drive system users will have only two responses per diskette copy.

Since the DFO (Destination Files only) option was not defined in COPY, it
is defined here to mean that only files already existing on the both the
destination and the source diskette are copied.

CONVERSION & COMMENTS12-1

12. CONVERSION INFORMATION AND MISCELLANEOUS COMMENTS

This chapter contains Version 1 to Version 2 conversion information,
miscellaneous information and changes to the information contained in other
chapters as those chapters were already sent to the printers before the
changes could be made.

12.1. RBAs gain in respectability

In late July, Apparat became aware that beginning with the Model III TRSDOS
Version 1.3, TRSDOS is using RBA (Relative Byte Addressing) as the format for
the EOF field in the directory FPDEs and for the EOF and NEXT fields in the
FCBs. Finally, after 28 months, one of the major incompatibilities between
NEWDOS and TRSDOS, that of the different handling of the FCB NEXT and EOF
fields, will be mostly, if not fully, eliminated.

See section 5.7 for discussion of the FPDE EOF field in the 4th, 21st and
22nd bytes. See section 5.9 for discussion of the FCB EOF field in the 9th,
13th and 14th bytes and the FCB NEXT field in the 6th, 11th and 12th bytes.

See section 12.4 for NEWDOS/80 Version 2 incompatibility with Model I TRSDOS
Version 2.3.

See section 12.5 for NEWDOS/80 Version 2 incompatibility with Model III
TRSDOS Version 1.3.

TRSDOS's changing of the FPDE EOF field to RBA format is the correct move to
make, but it has the unfortunate problem of making Model III TRSDOS 1.1 and
1.2 diskettes not directly readable on 1.3 and vice versa. Feeling that the
1.3 directory structure will become the Model III standard despite all
complaints, the functions of the NEWDOS/80 COPY command (see section 2.14)
that allow copying of files from and to Model III TRSDOS diskettes will work
with the Model III TRSDOS 1.3 diskettes only.

When RBAs were instituted in March, 1979 as the NEWDOS format for the FCB
NEXT and EOF fields, we also wanted to set the directory FPDE EOF fields to
RBA format. Doing so would have made all NEWDOS diskettes incompatible with
all existing TRSDOS diskettes and seriously reduced NEWDOS' usability. Since
there are very few programs that actually read or write the directory FPDE
EOF field and since the reason for changing to RBA formats is to eliminate
confusing situations that could occur in FCB processing, Apparat decided to
leave the directory FPDE EOF field alone. The procedure for converting from
the FPDE EOF format used by NEWDOS and the old TRSDOSs to RBA format and vice
versa is simple enough and doesn't cause confusion. The rules are:

To convert from the NEWDOS and old TRSDOS format to RBA format: if the
lower order byte of the 3 byte value is non-zero, subtract 256 from the 3
byte value (or subtract 1 from the high order 2 byte value).

To convert from RBA format to the NEWDOS and old TRSDOS format: if the
lower order byte of the 3 byte RBA value is non-zero, add 256 to the 3
Byte RBA value (or add 1 to the high order 2 byte value).

CONVERSION & COMMENTS 12-2

Even though at this time there are rumors of Model III compatible TRSDOS
coming out for the Model I that will use the RBA format in the directory FPDE
EOF field and even though Apparat agrees that that field should be in RBA
format, NEWDOS/80 for Version 2 will remain with the old format for that
field.

12.2. Converting from Version 1 to Version 2 on the Model I

1. Most programs that worked on Model I NEWDOS/80 Version 1 will work
on the Model I NEWDOS/80 Version 2.

2. The BREAK key enable/disable can no longer be controlled via bit 4
of 4369H. User program may continue to toggle this bit, but DOS ignores
it. See section 2.8.

3. FCB changes (see section 5.9):

1. Use of bit 2 (indicating track and sector operations) of FCB's
1st byte has been dropped.

2. New definitions have been created for bit 3 of the FCB's 2nd
byte and for bits 7 -5 of the FCB's 3rd byte.

3. FCB's 17th through And bytes have been redefined.

4. Directory changes (see sections 5.6, 5.7 and 5.8):

1. The GAT sector now accounts for lumps instead of tracks. Each
byte within the 00 - BF range in the GAT now corresponds to a
lump rather than a track, and granules per lump rather than
granules per track is now used. The first byte of each extent
element within FPDE's and FXDE's is now a lump number rather than
a track number. The 3rd byte of the diskette's first sector (the
boot sector) is now a lump number rather than a track number.
Provided the proper GPL value is specified in PDRIVE, all Version
1 directories and boot sector 3rd bytes are directly usable on
Version 2 and, with greater care, vice versa.

2. Bits 7, 6 and 5 of the FPDE 2nd byte have been defined.

3. The granule allocation table can now optionally use the first
192 bytes of the GAT sector. If the diskette's lump count is
greater than 96 (60H), the granule allocation has overflowed into
and negated the granule existence table (the lockout table).

5. DEBUG can no longer be enabled/disabled by the value in 4315H. User
programs can continue to set this location, but DOS ignores it.

6. DEBUG can no longer be entered by pressing the BREAK key; only the
123 keys are used (see section 4.1).

7. PDRIVE has been greatly altered. Study section 2.37 carefully. The
following PDRIVEs must be used to read and write existing Version 1

CONVERSION & COMMENTS12-3

diskettes on Version 2. These specifications must be used when making a
diskette that will be read on Version 1.

1. PDRIVE,dn1,dn2,TI=A,TD=A,TC=35,SPT=10,TSR=3,GPL=2,DDSL=17,DDGA=2
is the specification for standard 5 inch, single density single
sided diskettes. For 40, 77 or 80 track drives, set TC accordingly.

2. PDRIVE,dn1,dn2,TI=A,TD=C,TC=80,SPT=20,TSR=3,GPL=4,DDSL=17,DDGA=2
Use this PDRIVE setting for 5 inch, single density, double sided
diskettes. For 35, 40 or 77 tracks, set TC accordingly.

3. PDRIVE,dn1,dn2,TI=BH,TD=B,TC=77,SPT=15,TSR=3,GPL=3,DDSL=17,DDGA=2
is the specification for 8 inch, single density, single sided
diskettes used with the OMIKRON interface. Version 2 can handle up
to SPT=17 for this type of diskette; you may want to covert your
existing diskettes to gain the extra 12 percent space.

4. PDRIVE,dn1,dn2,TI=BH,TD=D,TC=77,SPT=30,TSR=3,GPL=6,DDSL=17,DDGA=2
is the specification for 8 inch, double sided, single density
diskettes used with the OMIKRON interface. Version 2 can handle up
to SPT=34 for this type of diskette; you may want to convert your
existing diskettes to gain the extra 12 percent space.

5. PDRIVE,dn1,dn2,TI=CK,TD=E,TC=34,SPT=18,TSR=3,GPL=2,DDSL=17,DDGA=2
is the specification for 5 inch, single sided, double density
diskettes with the PERCOM doubler interface. For 40, 77 and 80 track
drives, set TC to 39, 76 and 79 respectively. If LNW interface, use
TI=EK; if that doesn't work, try TI=CK.

6. NOTE!!! 5 inch, double sided, double density diskettes used on
NEWDOS/80 Version 1 cannot be used on Version 2. The files on
these diskettes must be moved, while using NEWDOS/80 Version 1,
to either double sided, single density or single sided, double
density diskettes, which can be used with Version 2. Once this is
done, the file may be copied to a Version 2 double sided, double
density diskette.

8. 5 inch double density diskettes are supported in Version 2 for the
PERCOM and LNW double density modifications.

9. SYSTEM has been greatly expanded. Study section 2.46 carefully.

1. Options AH and AK are dropped. Options AT through BN, except
BL, have been added.

2. Option BN decides whether NEWDOS/80 is to write single density
directory sectors to be readable by Model I TRSDOS or readable by
Model III NEWDOS/80. One or the other is allowed but not both.

3. Option BJ allows NEWDOS/80 disk delay timing loops to be
increased so that CPU speed up modifications can be active during
disk I/O. NEWDOS/80 can handle most CPU speed-ups, but it cannot
tolerate any slowdown of the CPU below the standard 1.772
megahertz speed.

10. COPY has been considerably changed. Study carefully section 2.14.

CONVERSION & COMMENTS 12-4

1. CBF will work even though the system diskette must be
dismounted or if all three diskettes will use the same drive.

2. If you are using CBF (format 6) to copy the NEWDOS/80 Version
2 system to another diskette, then you MUST specify the FMT
option. If you don't, the BOOT/SYS and DIR/SYS information may be
wrong. If you are simply copying one or more of the system files
to an existing system diskette (existing in the sense that it can
already boot properly on the drive it is supposed to boot on)
then you do not need to specify FMT. This information was not
included in the CBF documentation and should have been.

3. COPY allows files to be copied back and forth between a
NEWDOS/80 Version 2 diskette and a Model III TRSDOS Version 1.3
or higher diskette provided the proper PDRIVE setting is used
(see PDRIVE TI flag M).

11. The DOS system ID formerly at location 403EH is now shifted to
4427H. In Version 1, 403EH contained either 80 (50H) or 128 (80H). In
Version 2, location 4427H contains 130 (82H) identifying NEWDOS/80
Version 2, and location 442BH contains 01 if Model I and 03 if Model
III.

12. None of the NEWDOS/80 Version 1 modules, including all the system
modules, the BASIC modules and all other programs supplied on the
master diskette, can be used with NEWDOS/80 Version 2. Therefore, the
user files on Version 1 system diskettes must be copied to Version 2
system diskettes without copying any of the old Version 1 modules. For
single drive users, this is a monumental task, but even multi-drive
users must convert more than one system diskette. For each such system
diskette, you may use the following procedure to copy your files.

1. Using a copy of the zap updated NEWDOS/80 master system
diskette as both the system and source diskette, make another
copy of that diskette using format 5 or format 6 COPY with the
FMT option specified.

2. Kill off NEWDOS/80 Version 2 files that you do not want to
keep. You could have effectively done this by using the ILF
parameter in the above COPY, if that copy was format 6. Your ILF
file can be built starting with the NWD80V2/ILF file provided on
your NEWDOS/80 Version 2 master diskette and, using CHAINBLD/BAS
or SCRIPSIT to delete lines for unwanted files. Remember to save
the resulting file under a different name, which you will refer
to in the ILF parameter of the COPY.

3. Using the resulting diskette again as the destination diskette
and the old Version 1 diskette as the source diskette, perform a
format 6 copy with the NFMT and the XLF=NWD80V2/XLF:0 parameters.
This will copy all of your files from the Version 1 to the
Version 2 diskette but will not copy any of the NEWDOS/80 Version
1 files, since they were all excluded by the XLF file. The file
NWD80V2/XLF was included on the NEWDOS/80 Version 2 diskette
exactly for this purpose and can be inspected via SCRIPSIT or
CHAINBLD/BAS.

CONVERSION & COMMENTS12-5

4. If you wish to copy the resulting Version 2 system diskette
that now has your files as well back onto the old Version 1
diskette, you should do so using a format 5 or format 6 copy with
the FMT option specified. This gets the Version 2 system and your
files back onto the diskette with the old label.

12.3. Converting from Version 1 on the Model I to Version 2 on the Model III.

1. Most of section 12.2 applies here; read that section before reading
this one. This section will deal only with Model III specifics.

2. Most user programs that were zapped to work with NEWDOS/80 Version 1
will work on the Model III NEWDOS/80 Version 2 with the following
corrections:

1. All references to any bytes in the location range 4300H -
43FFH must be dropped or changed to different appropriate
locations. This area is now the system sector buffer instead of
the 4200H - 42FFH area used by Version 1.

2. The use of 4315H to toggle DEBUG must be dropped altogether.

3. The byte at 4312H used to enable/disable the BREAK key has
been shifted to 4478H. The toggling of bit 4 of location 4369H
must be dropped altogether.

4. The location of HIMEM has been shifted from 4049H - 404AR to
4411H - 4412H.

5. The location of the CLOCK has been shifted from 4041 - 4043H
to 4217H - 4219H.

6. The location of the DATE has been shifted from 4044H - 4046H
to 421AH - 421 CH.

7. The 25ms one byte cyclic counter has been shifted from 4040H
to 441FH. The user timer interrupt routines still cycle based on
25ms increments even though the interrupts really occur every
1/30th or 1/125th of a second.

8. The 4410H vector used to insert a timer interrupt routine into
NEWDOS/80's queue has been changed to 447BH (see section 3.8).

9. The DOS command buffer has been changed from starting at 4318H
to start at 4225H.

3. The Model III NEWDOS/80 Version 2 diskette directories are in Model
I NEWDOS/80 Version 2 format and are NOT compatible with Model III
TRSDOS diskettes.

4. The Model III NEWDOS/80 Version 2 FCB format is the same as for the
Model I NEWDOS/80 Version 2 and is NOT compatible with the Model III
TRSDOS FCB format.

CONVERSION & COMMENTS 12-6

5. The following PDRIVE specifications must be used to read and write
existing Version 1 diskettes on Model III Version 2. These
specifications must be used when making a diskette that will be read on
Version 1.

1. PDRIVE,dn1,dn2,TI=AK,TD=E,TC=39,SPT=18,TSR=3,GPL=2,DDSL=17,DDGA=2
is the specification for 5 inch, single sided, double density, 40
track diskettes. For 35, 77 or 80 tracks, set TC to 34, 76 and 79
respectively.

2. PDRIVE,dn1,dn2,TI=A,TDuA,TC=80,SPT=10,TSR=3,GPL=2,DDSL=17,DDGA=2
is the specification of a 5 inch, single sided, single density
diskette. For 35, 40 or 77 track drives, set TC accordingly.

3. PDRIVE,dn1,dn2,TI=A,TD=C,TC=80,SPT=20,TSR=3,GPL=4,DDSL=17,DDGA=2
is the specification of a 5 inch, double sided, single density, 80
track diskette. For 35, 40 and 77 track drives, set TC accordingly

4. NOTE!!! 5 inch, double sided, double density diskettes used on
NEWDOS/80 Version 1 cannot be used directly on the Model III. See
section 12.2.7.6.

12.4. NEWDOS/80 Version 2 incompatibilities with Model I TRSDOS Version 2.3.

1. NEWDOS/80 maintains the NEXT field of the FCB in RBA format at all
times. TRSDOS 2.3 maintains the NEXT field as an RBA whenever the lower
order byte equals 0 or whenever the current write position is within a
buffer that has been changed but not yet updated. In most other cases,
TRSDOS tends to maintain the NEXT field equal to the RBA plus 256. At
any one time, there is some confusion just what the NEXT field really
means.

2. NEWDOS/80 maintains the EOF field of the FCB in RBA format at all
times, and it updates the FCB EOF field for each byte written to the
file, if indeed the EOF is to be changed. TRSDOS 2.3 updates the EOF
only when the sector is actually written, though the low order byte is
updated continuously during single byte or logical record writes. Thus
if the current record would cause a change in EOF, EOF has two possible
values, depending upon whether the current sector has pending data
awaiting write or the current sector has already be written. Normally
TRSDOS's FCB EOF value is an RBA value if the low order byte equals 0
and RBA plus 256 if the low order byte is non-zero.

3. Enabling or disabling of DEBUG in TRSDOS is still done by setting
the byte at 4315H which is ignored in Model I NEWDOS/80 and must not be
done in Model III NEWDOS/80.

4. Activation and deactivation of timer routines is done differently in
the two systems (see sections 3.8 and 3.9 for the NEWDOS/80 methods).

5. Both Model I TRSDOS and NEWDOS/80 use essentially the same directory
format except that TRSDOS is still limited to 35 track diskettes and a

CONVERSION & COMMENTS12-7

two granule directory and that NEWDOS/80 uses some previously unused
bytes and bits.

6. The following is a list of routines defined in chapter 3 that are
common to both NEWDOS/80 Version 2 and Model I TRSDOS 2.3. Each routine
performs nearly the same in both systems. The other chapter 3 routines
are either not used in Model I TRSDOS or are defined for different
functions. These common routines are:

0013H, 001BH, 402DH, 4030H, 4400H, 4405H, 4409H, 440DH, 441CH, 4420H,
4424H, 4428H, 442CH, 4430H, 4433H, 4436H, 4439H, 443CH, 443FH, 4442H,
4445H, 4448H, 4467H, 446AH, 446DH, 4470H, 4473H

12.5. NEWDOS/80 Version 2 incompatibilities with Model III TRSDOS Version 1.3

1. Model III TRSDOS diskettes are totally incompatible with NEWDOS/80
Version 2 diskettes. 5 inch, single density, single sided, 35 track
diskettes with a two granule directory starting on lump 17 can be
processed with Model III TRSDOS's convert program. Also, files can be
copied back and forth between NEWDOS/80 Version 2 diskettes and Model
III TRSDOS Version 1.3 or higher diskettes providing the PDRIVE
specifications for the Model III TRSDOS diskette include the TI flag M.

2. Model III TRSDOS Version 1.3 has gone to using RBA values in the
NEXT and EOF fields of the FCB and the EOF field of the directory. With
this change to the FCB processing, NEWDOS/80 and TRSDOS has become more
compatible than previously though, at this printing, just how close is
not yet clear.

3. Model III TRSDOS uses a 50 byte FCB whereas NEWDOS/80 Version 2
stays with the old 32 byte format. NEWDOS/80 can use the 50 byte FCB
area, but TRSDOS will clobber the 18 bytes following a 32 byte FCB.
Users should study the specifications of the FCB's between the two
systems as the differences are not detailed here.

4. The byte used to enable or disable the BREAK key is at 42AEH for
Model III TRSDOS whereas it is as 4478H for Model III NEWDOS/80 and
4312H for Model I NEWDOS/80. If the byte equals 0C9H the BREAK key is
enabled, and if the byte equals 0C3H the BREAK key is disabled.

5. The following is a list of the routines defined in chapter 3 that
are common to both NEWDOS/8$ Version 2 and Model III TRSDOS. Each
routine performs nearly the same in both systems. The other chapter 3
routines are either not used in Model III TRSDOS or are defined for
different functions. These common routines are:

0013H, 001BH, 402DH, 4030H, 4409H, 440DH, 441CH, 4420H, 4424H, 4428H,
442CH, 4430H, 4433H, 4436H, 4439H, 443FH, 4442H, 4445H, 4448H.

6. Refer to section 7.13 for comparison of the BASIC CMD functions
offered in NEWDOS/80 with those offered for Model III TRSDOS.

CONVERSION & COMMENTS 12-8

7. Routing is handled somewhat differently in the two systems.
Straightforward applications should be all right. DUAL is not
implemented in NEWDOS/80.

12.6. Miscellaneous Comments

1. A very few users have coded system routines to be loaded by DOS' system
routine loader, and these users should be aware that NEWDOS/80 Version 2
uses the system FPDE slots through SYS21/SYS. Whereas NEWDOS/21 and TRSDOS
were limited to 14 system programs loadable by the system program loader
NEWDOS/80 allows for 30 with FDE slot assignment continuing the same order
established by the old TRSDOS. The code to activate a routine in one of
these directory position dependent system modules is sent to the system in
register A, must be greater than 1FH and in uuubbsss 8 bit format where:

sss+2 = the relative sector in the directory containing the FDE.

bb times 32 (20H) = the offset in the sector to the FDE.

uuu = a user defined code greater than 0.

A future release of NEWDOS will use system programs from SYS22/SYS
and up; users should start from SYS29/SYS down.

2. All NEWDOS80 support programs use HIMEM high memory value in Model I
locations 4049H-404AH (Model III locations 4411H-4412H) as upper memory
limit.

3. (Model I only) During power on, reset or a jump to location control
is passed to the ROM. To determine if the disk controller is present,
the ROM tests the contents of location 37ECH, the disk controller
status byte. If the value is either 00 or FFH, ROM assumes a non-disk
system and proceeds to initialize non-disk level II BASIC. However, 00
is a valid disk controller state, meaning that the controller has no
status and the drives are ready (the light is on). To avoid this
unwanted entry into non-disk BASIC, wait until the ready light goes off
before pressing reset.

4. To speed up disk operations when additional file space is allocated
to a file, NEWDOS/80 allocates up to 4 granules at one time. There is a
disadvantage to this, however. If two or more new files on the same
diskette are open at the same time, it is quite possible to run out of
file space, close all the files and then find out the diskette now has
space, as CLOSE released the extra granules that files had allocated
but not yet used.

5. NEWDOS/80 currently does not have any check on maximum-track number
when it moves the diskette arm. If the track number exceeds the
physical limits of the drive, the drive arm will bang against the stops
for as many times as the track number exceeds the physical number of
tracks for the drive. Since DOS retries I/O a number of times, it can
be as long as one minute before the I/O is declared in error. To cut
this interval short when this banging occurs, simply open the drive

CONVERSION & COMMENTS12-9

door and wait till either the drives stop rotating or the error is
declared. Then close the drive door.

6. The BASIC single stepping (CMD"F=SS") function does not allow time
dependent functions such as an INKEY$ loop to work. In the case of
INKEY$, if the user inputs a non-null key to INKEY$ along with the
ENTER that steps BASIC, the INKEY$ key is ignored since it is seen
before the ENTER. Also, the single stepping display does not work in 32
character display mode.

7. FORMAT correction. Parameter PFST is mutually exclusive with Y and
with N.

8. COPY correction. If format 6 COPY (CBF) is used to copy the
NEWDOS/80 system to a new system diskette, the parameter FMT must be
specified in order that system files be allocated the required
directory FPDEs, be assigned disk space in the required position
relative to the directory, have the proper information placed into file
BOOT/SYS. This type of COPY must be used whenever a system diskette is
created whose PDRIVE specification is different from that of the source
diskette.

INDEX1

INDEX

– A –

ACC 2-4
alpha 10-1
alphanumeric 10-1
APPEND 2-2
ASC 2-4,2-19
ASE 2-4,2-19
ASPOOL 5-3,6-19
 activation 6-21
 initial setup 6-19
Asychronous Execution 2-4
ATTRIB 2-3
AUTO 2-5

– B –

BASIC MODULES 5-2
BASIC2 2-5
BAUD 2-44
BDU 2-13
bit 10-1
BLINK 2-5
BOOT 2-6,10-1
BOOT/SYS 5-1,10-1
BREAK 2-6,12-2
buffer 10-1
byte 10-1

– C –

CBF 2-14
CHAIN 2-6,4-7
CHAINBLD 5-3,6-16
chaining 10-1
CHAINTST 5-3
character 10-1
CHNON 2-7
CFWO 2-14
CLEAR 2-8
CLOAD 7-1
CLOCK 2-9,3-11
CLOSE 3-7,10-2,A-9
CLS 2-9
CMD 7-8
 A 7-8
 B 7-8
 BREAK 7-1
 C 7-8
 D 7-9
 E 7-9
 F 7-9
 DELETE 7-13
 ERASE 7-12
 KEEP 7-12
 POPN 7-12

 POPR 7-12
 POPS 7-12
 SASZ 7-12
 SS 7-14,12-9
 SWAP 7-13
 I 7-10
 J 7-10
 L 7-10
 O 7-10,7-14
 P 7-10
 R 7-10
 S 7-10
 T 7-10
 X 7-10
 Z 7-10
doscmd 7-11
COPY 2-9,12-4,12-9
CREATE 2-18
CVD 8-20
CVI 8-20
CVS 8-20

– D –

DATE 2-19,3-11
DDGA 2-15
DDND 2-12
DDSL 2-15
DEBUG - 123 2-20,4-1,3-3,12-2
DEC 10-2
DFG - MINI-DOS 4-6
DFO 11-8
DI 7-4
DIR 2-20
DIRCHECK 5-3,6-12
directory 12-2,10-2
Directory Structure 5-4
DIR/SYS 5-1,10-2
DISASSEM 5-3,6-5
DISK BASIC 7-1,8-1
 activating 7-2
 command truncation 7-4
 direct commands 7-3
 enhancements 7-1
 I/O enhancements 8-1
 file types 8-1
 module overlays 7-1
DO 2-22,4-7
DOS 10-2
DOS-CALL 4-12,3-4,10-2
DOS command (doscmd) 10-2
DOS ROUTINES 3-1
DOS SYSTEM MODULES 5-1
DPDN 2-10
DU 7-4
DUMP 2-22

INDEX 2

– E –

EDTASM 5-3,6-14
EDIT direct commands 7-1,7-3
 / or shift up-arrow 7-3
 ; or shift down-arrow 7-3
 . 7-3
 , 7-3
 : 7-3
 @ 7-3
 up-arrow 7-3
 down-arrow 7-3
EOF 10-3
EOL 10-3
EOM 10-3
EOR 10-3
EOS 10-3
ERROR 2-24,3-2
error messages 9-1,7-1
 DOS 9-1,7-1
 BASIC 9-2,7-2
extent element 10-3

– F –

fan 10-3
FCB 5-9,3-9,3-10,10-3
FDE 5-6,10-3
FF FILE 8-10,10-3,A-39,B-5,B-6,B-7
FI FILE 8-10,10-4,A-45,B-15
FIELD ITEM FILE 10-4
file 10-4
file item 10-4
filearea 10-4
filespec 10-4
FILE TYPE (ft) 8-10
 FI 8-10,A-45
 FF 8-10,A-39
 MI 8-10,A-35
 MF 8-10,A-30
 MU 8-10,A-20
FILE POSITIONING (fp) 8-3,10-5,A-1
FIXED ITEM FILE 8-7,10-4
FMT 2-12
FORMAT 2-24,12-9,10-4
FORMS 2-26
FPDE 5-7,10-5
FREE 2-27
FXDE 5-9,10-5

– G –

GAT sector 5-5,12-2,10-5
GET 8-12,A-10
granule 10-5

– H –

hash code 10-5
hexadecimal 10-5

HIMEM 2-27,12-8,10-6
HIT sector 5-6,10-6

– I –

I/O error recovery 8-19
I/O link or path 10-6
ILF 2-14
IGEL 8-4,10-6
IGEL expression 8-5,10-6
IGELSN 10-6
item group 10-7

– J –

JKL 2-27,4-13

– K –

KDD 2-13
KDN 2-13
KILL 2-28

– L –

LC 2-29
LCDVR 2-29
len 10-7
LIB 2-30
LINES 2-26
LIST 2-30
LMOFFSET 5-3,6-9
LOAD 2-31,3-7,7-4
 V option 7-4
LOC 8-18,A-18
LOCK 2-3,2-40
LOF A-17
logical record 10-7
Lower Case Suppression 7-8
LRECL 10-7
LRL 2-18
LSET 8-20
LUMP 12-2,10-7

– M –

MARKED ITEM FILE 8-7,10-7
MDBORT 2-31
MDCOPY 2-32
MDRET 2-32
MERGE 7-5
MF FILE 8-10,10-7,A-30,B-12,B-14
MI FILE 8-10,10-7,A-35,

B-14,B-15,B-17
MINI-DOS - DFG 4-5
MKD$ 8-20
MKI$ 8-20
MKS$ 8-20
ms 10-7
MU FILE 8-10,10-7,A-20 ,B-2,

B-3,B-4,B-9,B-10,B-11

INDEX3

– N –

null 10-7
null character 10-8
null string 10-8
NDNW 2-12
NDN 2-13
NDPW 2-12
NFMT 2-12
NOWAIT 2-44

– O –

ODN 2-1 2
ODPW 2-14
OPEN 8-9,3-5,3-6,9,10-8,A-6

– P –

PARITY 2-44
partial record I/O 10-8
PAUSE 2-33
PDRIVE 2-33,12-2
 A 2-37
 DDGA 2-37
 DDSL 2-37
 GPL 2-37
 SPT 2-37
 TC 2-36
 TD 2-36
 TI 2-34
 TSR 2-37
PFST 2-25
PFTC 2-25
PRINT 2-39
print/input file 10-8
PROT 2-3,2-40
PSEUDO FIELD 8-17
PURGE 2-41
PUT 8-14,A-13

– R –

R 2-41
RBA 12-1,10-8
REC 2-18
REF 7-7
REGISTRATION 1-1
REMBA 8-16,10-8
REMRA 8-16,10-8
RENAME 2-42
RENEW 7-17
RENUM 7-5
Reporting errors 11-1,11-2
reset/power-on 10-8
ROUTE 2-42,12-8
RSET 8-20
RUN 7-4
 V option 7-4
RUN-ONLY 7-2,7-8

REF 2-40

– S –

sector 10-9
SETCOM 2-44
SN 2-13
SOR 10-9
SPDN 2-10
SPW 2-12
STMT 2-45
SUPERZAP 5-3,6-1
 display mode 6-3
 function mode 6-1
 modify mode 6-4
 SCOPY 6-3
SYSTEM 2-45,12-3
 AA 2-46
 AB 2-46
 AC 2-46
 AD 2-46
 AE 2-46
 AF 2-46
 AG 2-46
 AH 2-46
 AI 2-47
 AJ 2-47
 AK 2-47
 AL 2-47
 AM 2-47
 AN 2-47
 AO 2-47
 AP 2-47
 AQ 2-47
 AR 2-47
 AS 2-48
 AT 2-48
 AU 2-48
 AV 2-48
 AW 2-48
 AX 2-48
 AY 2-48
 AZ 2-48
 BA 2-48
 BB 2-48
 BC 2-49
 BD 2-49
 BE 2-49
 BF 2-49
 BG 2-49
 BH 2-49
 BI 2-49
 BJ 2-49
 BK 2-49
 BM 2-49
 BN 2-49
SYSTEM Files Required 5-1
SYSTEM reduced size 5-4

INDEX 4

STOP 2-44

– T –

track 10-9
TIME 2-50
timer interrupts 3-3,3-4

– U –

UBB 2-13
UDF 2-4
UNLOCK 2-40
UPD 2-4,2-14
UPDATE SERVICE 11-6
USD 2-13
USR 2-14,2-41
user segmented file 10-9

– V –

VERIFY 2-51
vice 2-44

– W –

WIDTH 2-26
whole record I/O 10-9
WORD 2-44
WRDIRP 2-52

– X –

XLF 2-14

- Z -

ZAP 10-9
ZAPS
 Distribution 11-5
 Duplication 11-7
 Format 11-2
 Installation 1-4,11-5,11-6
 Procedure 11-4
 Update Service 11-6

– SYMBOLS –

/ext 2-14,2-41
*name routine 3-10,3-11
123 - DEBUG 2-19,4-1
/ or shift up-arrow 7-3
; or shift down-arrow 7-3
. 7-3
, 7-3
@ 7-3
up-arrow 7-3
down-arrow 7-3

	Cover
	Table of Contents
	INTRODUCTION
	Registration.
	Trademark Credits.
	What Is Apparat's DOS/80 Version 2?
	Duplicate and Specify the System.
	Apply Outstanding Zaps.
	Commence Using NEWDOS/80.
	Apparat Thanks Its Beta Testers.

	DOS LIBRARY COMMANDS
	Notation Conventions and General Information.
	APPEND	Append one file onto the end of another.
	ATTRIB	Assign attributes to a file.
	AUTO	Define the DOS command to be executed at reset.
	BASIC2	Activate non˚disk BASIC (Model I only).
	BLINK	Enable/disable cursor blinking.
	BOOT	Reset the computer.
	BREAK	Enable/disable the BREAK key.
	CHAIN	Shift to keyboard input from disk.
	CHNON	Alter chaining state.
	CLEAR	Clear user memory routes, timer and logical enqueues.
	CLOCK	Display the time every second.
	CLS	Clear the display.
	COPY
	CREATE	Pre˚allocate a disk file.
	DATE	Set computer's current date.
	DEBUG	enable or disable the DEBUG facility.
	DIR	Display a diskette's directory information.
	DO	Shift to keyboard input from disk.
	DUMP	Dump memory contents to disk.
	ERROR	Display DOS error message.
	FORMAT	Format a diskette for use with the NEWDOS/80 system.
	FORMS	(Model III only) Set printer parameters.
	FREE	Display number of free granules and free FDFs for each diskette currently mounted.
	HIMEM	Set DOS's high memory value.
	JKL	Send the current contents of the display to the printer.
	KILL	delete a file.
	LC	Set keyboard a ˚ z toggle switch to the specified state.
	LCDVR	(Model I only) Lower case driver.
	LIB	Display NEWDOS/80 library commands.
	LIST	List a text file on the display.
	LOAD	Load a Z˚80 machine language file into RAM.
	MDBORT	Terminate MINI˚DOS and go to DOS READY.
	MDCOPY	Copy a file while under MINI˚DOS.
	MDRET	Exit from MINI˚DOS and return to main program.
	PAUSE	Display message and pause waiting on ENTER.
	PDRIVE	Assign default attributes to a physical drive.
	PRINT	List a text file on the printer.
	PROT	Alter some diskette control data.
	PURGE	Selectively kill files from a diskette.
	R	Repeat the previous DOS command.
	RENAME	Rename a file.
	ROUTE
	SETCOM	(Model III only) Set RS˚232 interface parameters.
	STMT	Display specified message.
	SYSTEM	Change system options.
	TIME	Set the real time clock.
	VERIFY	Require verify read after every disk write.
	WRDIP	Write directory sectors protected.

	DOS ROUTINES
	Specifications Defined
	402DH	No˚Error Exit
	4030H	Error˚already˚displayed DOS Error Exit
	4400H	No-Error Exit. Performs identical to 402DH.
	4405H	Enter DOS and execute a command
	4409H	DOS Error Exit
	440DH	Enter DEBUG
	4410H	(447BH in Model III) Enquene a user timer interrupt routine.
	4413H	Dequeue a user timer interrupt routine.
	4416H	Keep drives rotating
	4419H	DOS˚CALL Execute a DOS command and return.
	441CH	Extract a filespec
	4420H	Open a FCB to a new or existing disk file
	4424H	OPEN a FCB to an existing file
	4428H	CLOSE a FCB. Conditions 3.1.A, B and C hold
	442CH	Kill the FCB's associated file
	4430H	Load a program file
	4433H	Load and commence execution of a program file
	4436H	Read sector or logical record from disk
	4439H	Write sector or logical record to disk
	443CH	Write sector or logical record to disk with verify read
	443FH	Position FCB to start of file
	4442H	Position FCB to a specified file record
	4445H	Position FCB back one record
	4448H	Position FCB to EOF
	444BH	Allocate file space
	444EH Position FCB to the specified RBA
	4451H	Write the EOF value from the FCB to the directory
	445BH	Select and power up the specified drive
	445EH	Test for mounted diskette
	4461H	*Name routine enqueue
	4464H	*name routine dequeue
	4467H	Send message to the display
	446AH	Send message to the printer
	446DH	Convert clock time to HH:HM:SS character format
	4470H	Convert the date to MM/DD/YY character format
	4473H	Insert default name extension into filespec
	0013H	Read a byte from a disk file
	001BH	Write a byte to a disk file
	447BH	Model III only (performs as Model I 4410H)

	DOS FEATURES
	DEBUG Facility
	MINI˚DOS
	CHAINING
	DOS˚CALL
	JKL
	Asynchronous Execution

	DOS MODULES, DATA STRUCTURES, AHD MISCELLANEOUS INFORMATION
	Files required on each diskette used with NEWDOS/80
	NEWDOS/80 DOS System Modules
	NEWDOS/80 BASIC Modules
	Other Modules on the NEWDOS/80 diskette
	Reduced Sized System.
	Diskette Directory Structure
	FPDE File Primary Directory Entry
	FXDE	File Extended Directory Entry
	FCB File Control Block

	ADDITIONAL PROGRAMS SUPPLIED OP NEWDOS/80 DISKETTE
	SUPERZAP
	DISASSEM
	LMOFFSET
	DIRCHECK
	EDTASM Disk Oriented Editor/Assembler
	CRAINBLD
	ASPOOL

	DISK BASIC, NON˚I/O ENHANCEMENTS
	INTRODUCTION, Requirements
	General comments
	Activating DISK BASIC
	Direct Scrolling/Editing Commands
	Text Editing Command Truncation
	DI and DU text editing functions
	RUN and LOAD (optionally retaining variables)
	MERGE	Dynamic loading of overlay program
	RENUM	Renumber the Current BASIC Program.
	REF	List references to variables, line numbers and keywords
	Lower Case Suppression (Model I only)
	RUN˚ONLY
	Comarisons in the use of the function CMD between NEWDOS/80 and TRSDOS.
	CMD"doscmd"
	CMD"F=POPS", CMD"POPR" and CMD"F=POPN"
	CMD"F=SASZ"
	CMD"F=ERASE" and CMD"F=KEEP"
	CMD"F",DELETE
	CMD"F=SWAP"
	CMD"F=SS"
	CMD"O"
	RENEW

	BASIC DISK I/O ENHANCEMENTS AND DIFFERENCES
	Introduction
	File Type
	File type differences
	Components of GET and PUT
	Fixed item file characteristics
	Marked item file characteristics
	OPEN
	GET
	PUT
	REMRA and REMBA
	Pseudo FIELD Function
	LOC Function
	I/O Error Recovery
	Additional notes about NEWDOS/80 DISK BASIC I/O

	ERROR CODES AND MESSAGES
	DOS Error Codes and Messages
	DISK BASIC Error Codes and Messages

	GLOSSARY
	ERROR REPORTING, INCOMPATIBILITY HANDLING, AND PATCHING
	Introduction
	Incompatibility Handling
	Reporting of NEWDOS/80 Errors and Incompatibilities
	Format of NEWDOS/80 Zaps
	Zapping Procedure
	NEWDOS/80 Zap Distribution
	Initial Installation of Zaps
	Subsequent Installation of Zaps
	Diskette Update Service
	Zap Duplication.

	CONVERSION INFORMATION AND MISCELLANEOUS COMMENTS
	RBAs gain in respectability
	Converting from Version 1 to Version 2 on the Model I
	Converting from Version 1 on the Model I to Version 2 on the Model III.
	NEWDOS/80 Version 2 incompatibilities with Model I TRSDOS Version 2.3.
	NEWDOS/80 Version 2 incompatibilities with Model III TRSDOS Version 1.3
	Miscellaneous Comments

	APPENDICES
	Index

